
Syst. Biol. 57(5):758–771, 2008
Copyright c© Society of Systematic Biologists
ISSN: 1063-5157 print / 1076-836X online
DOI: 10.1080/10635150802429642

A Rapid Bootstrap Algorithm for the RAxML Web Servers

ALEXANDROS STAMATAKIS,1 PAUL HOOVER,2 AND JACQUES ROUGEMONT3

1The Exelixis Lab, Teaching and Research Unit Bioinformatics, Department of Computer Science, Ludwig-Maximilians-University Munich,
Amalienstr. 17, D-80333, Munich, Germany; E-mail: stamatakis@bio.ifi.lmu.de

2San Diego Supercomputer Center, La Jolla, California, USA
3School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract.—Despite recent advances achieved by application of high-performance computing methods and novel algorithmic
techniques to maximum likelihood (ML)-based inference programs, the major computational bottleneck still consists in
the computation of bootstrap support values. Conducting a probably insufficient number of 100 bootstrap (BS) analyses
with current ML programs on large datasets—either with respect to the number of taxa or base pairs—can easily require
a month of run time. Therefore, we have developed, implemented, and thoroughly tested rapid bootstrap heuristics in
RAxML (Randomized Axelerated Maximum Likelihood) that are more than an order of magnitude faster than current
algorithms. These new heuristics can contribute to resolving the computational bottleneck and improve current methodology
in phylogenetic analyses. Computational experiments to assess the performance and relative accuracy of these heuristics
were conducted on 22 diverse DNA and AA (amino acid), single gene as well as multigene, real-world alignments containing
125 up to 7764 sequences. The standard BS (SBS) and rapid BS (RBS) values drawn on the best-scoring ML tree are highly
correlated and show almost identical average support values. The weighted RF (Robinson-Foulds) distance between SBS-
and RBS-based consensus trees was smaller than 6% in all cases (average 4%). More importantly, RBS inferences are between
8 and 20 times faster (average 14.73) than SBS analyses with RAxML and between 18 and 495 times faster than BS analyses
with competing programs, such as PHYML or GARLI. Moreover, this performance improvement increases with alignment
size. Finally, we have set up two freely accessible Web servers for this significantly improved version of RAxML that provide
access to the 200-CPU cluster of the Vital-IT unit at the Swiss Institute of Bioinformatics and the 128-CPU cluster of the CIPRES
project at the San Diego Supercomputer Center. These Web servers offer the possibility to conduct large-scale phylogenetic
inferences to a large part of the community that does not have access to, or the expertise to use, high-performance computing
resources. [Maximum likelihood; phylogenetic inference; rapid bootstrap; RAxML; support values.]

Phylogenetic trees are used to represent the evolu-
tionary history of a set of n organisms. An alignment
of DNA or protein sequences that represent these n or-
ganisms can be used as input for phylogenetic infer-
ence. In a phylogeny the organisms of the input dataset
are located at the tips (leaves) of the tree and the in-
ner nodes represent extinct common ancestors. Due to
the rapid growth of sequence data over the last years,
which is further accelerated by new sequencing tech-
niques, there exists an increasing demand to compute
large trees, which often comprise more than 1000 or-
ganisms and/or sequence data from several genes (so-
called multigene alignments). Because alignments are
becoming ever larger in the number of organisms and
in sequence length, there is an increasing need for effi-
cient phylogeny programs. The fundamental algorithmic
problem lies in the immense number of alternative tree
topologies, which grows exponentially with the number
of organisms n; e.g., for n = 50 there exist 2.84 × 1076 al-
ternative trees. It has recently been shown that the ML
phylogeny problem is NP-hard (Chor and Tuller, 2005).

In addition to the algorithmic problem, ML-based
inference of phylogenies (Felsenstein, 1981) is mem-
ory and floating point intensive. Thus, the application
of high-performance computing techniques can signif-
icantly contribute to the reconstruction of larger trees
(see Stamatakis et al., 2005b; Charalambous et al., 2005;
Blagojevic et al., 2007; Ott et al., 2007). More empha-
sis needs to be placed on the so-called “memory gap”
problem; i.e., the fact that memory access speeds have
been growing at a significantly lower rate than CPU
speeds over the last 20 years (see Wilkes, 2001 for a

summary). This means that execution times of the ML
function for alignments with increasing length will not
scale linearly due to a larger average number of cache
misses per instruction. Despite the high computational
cost, significant progress has been achieved over the last
few years in the field of heuristic ML search algorithms
with the release of several new programs. Nonetheless,
the main computational burden consists in computing
BS support values on trees, which can require more than
1 month of sequential execution time for a probably in-
sufficient number of 100 replicates on a reasonably fast
CPU.

There has been a long-lasting controversial discus-
sion on support value interpretation and the differ-
ences between Bayesian and BS methods as well as
their interpretation, which is summarized; e.g., in the
introduction of Anisimova and Gascuel (2006). Nonethe-
less, the computation of BS values (Felsenstein, 1985)
will remain a standard technique in the foreseeable fu-
ture and represents a useful way to assess the topo-
logical stability of trees under slight alterations of the
input data. From a computational point of view, one
might argue in favor of topology-based resampling
strategies because they better account for the vastness
of the topological search space. Moreover, it has be-
come common practice in recent phylogenetic analy-
ses to use and compare the results and support values
obtained via multiple methods (maximum parsimony,
ML, Bayesian). Therefore, rather than taking the debate
on support metrics further, the focus of this article is
on the development and experimental assessment of
novel rapid bootstrap (RBS) heuristics in RAxML that

758

2008 STAMATAKIS ET AL.— A RAPID BOOTSTRAP ALGORITHM FOR RAXML 759

yield execution time improvements of more than one
order of magnitude while returning BS support val-
ues that are qualitatively comparable to those obtained
via the standard, well-established search algorithms.
The current version of RAxML (Randomized Axeler-
ated Maximum Likelihood, version 7.0.4; Stamatakis,
2006b) is a tool for large-scale ML-based inference of
evolutionary trees for DNA or AA (amino acid) data
under plain or partitioned (sometimes referred to as
mixed) models. The code used to conduct computa-
tional experiments for this article is an earlier, pre-release
version.

ALGORITHMS AND WEB SERVERS

The main design goal was to implement a “quick
and dirty” bootstrap procedure (RBS) that runs signif-
icantly faster than standard bootstrapping (SBS), while
returning highly correlated support values and compa-
rable average bipartition frequencies. In order to achieve
this, an algorithmic engineering approach (Moret, 2002)
was adopted that consisted of several iterations through
search algorithm modifications and large-scale compu-
tational experiments on a broad and diverse range of
real datasets. This approach is well-suited for the design
of ML-based search heuristics, because they prove to be
hard to analyze using theoretical tools due to the com-
plexity of the non-discrete optimality criterion underly-
ing this NP-complete problem. As an example, consider
the fact that NP hardness of ML could be demonstrated
only as recently as 2005 (Chor and Tuller, 2005), nearly
25 years after the introduction of the model.

The rationale for using real-world data to steer
algorithmic design and assess performance is that state-
of-the-art simulated data generation tools are unable to
reproduce algorithmic behavior on real data. Trees for
perfect simulated data tend to be “easier” to infer than
trees for real-world data. To this end, we have made an
effort to assemble a set of alignments that covers a broad
range of organisms and dataset sizes. In addition to the
RBS algorithm, we also implemented an improved ML
search algorithm (compared to standard ML searches in
RAxML), which is executed after the RBS search to infer
an ML tree on the original alignment; i.e., to conduct a full
ML analysis, including BS and ML searches in a single
program run. The main reason for this was to facilitate
the design of the Web servers that thus need to invoke the
program only once for each individual job submission.
In addition, this implementation allows for future ex-
ploration of ML search algorithms that use information
gathered during the BS analysis to steer a more efficient
exploitation of search space. Therefore, the ML search
on the original alignment is conducted after the RBS
search.

Likelihood Cutoff Heuristics

We briefly describe recently introduced (Stamatakis
et al., 2007) heuristics in RAxML that are required as a
prerequisite to outline the rapid BS and ML search algo-

subtree

ll(t)

Tree t’

Tree t

prune subtree

rearrangement distance

pruning point

if(d(all(t’), ll(t)) < threshold)

skip remainimg rearrangements
in current clade

LSR: optimize these
three branches only

FIGURE 1. Outline of lazy subtree rearrangements with cutoff pro-
cedure.

rithms. The standard RAxML SBS searches to which we
refer throughout this article already include these heuris-
tics. The basic concept of the likelihood cutoff heuristics
is outlined in Figure 1.

The fundamental mechanism that is used to search
the tree space with RAxML is called Lazy Subtree Rear-
rangement (LSR; for details see Stamatakis et al., 2005a).
Similar mechanisms are used in GARLI (Zwickl, 2006)
and have been proposed for PHYML (Hordijk and Gas-
cuel, 2005). Here we describe an extension of the spe-
cific LSR search mechanism implemented in RAxML. An
LSR consists in pruning/removing a subtree from the
currently best tree t and subsequently reinserting it into
all neighboring branches up to a certain distance/radius
(rearrangement distance) of n nodes from the pruning
point (n typically ranges from 5 to 25). For each possi-
ble subtree insertion within the rearrangement distance,
RAxML computes an approximate log likelihood score of
the alternative topology. This computation is performed
in a lazy fashion because only the length of the three
branches adjacent to the insertion point/node will be
optimized. Thus, an LSR only yields an approximate log
likelihood all(t′) score for each alternative topology t′
constructed by applying an LSR to t. This approximate
all(t′) score can be used to pre-score and sort the po-
tential alternative topologies accordingly. After this fast
pre-scoring of a large number of alternative topologies,
only a small fraction of the best-scoring topologies needs
to be optimized more exhaustively to improve the over-
all tree score. One iteration of the RAxML hill-climbing
algorithm consists in performing LSRs on all subtrees
for a given topology t and a fixed rearrangement dis-
tance n. Thereafter, the branch lengths of the 20 best-
scoring trees are thoroughly optimized. This procedure
of conducting LSRs on all subtrees and then optimizing
the 20 best-scoring trees is performed until no further

760 SYSTEMATIC BIOLOGY VOL. 57

likelihood improvement can be achieved by application
of LSRs (see Stamatakis et al., 2005a, for a more detailed
description).

The main idea of the recently introduced heuristics
(Stamatakis et al., 2007) consists in reducing the number
of LSRs that are performed per subtree. This is achieved
by deploying an empirical cutoff rule that stops the recur-
sive descent of an LSR into deeper branches at a higher re-
arrangement distance n from the pruning position, if they
do not appear to be promising. Thus, if the approximate
log likelihood all(t′) for the rearranged tree t′ is worse
than the log likelihood ll(t) of the currently best tree t
and if the difference δ(all(t′), ll(t)), where δ(x, y) = x −
y, is larger than a certain—dynamically determined—
threshold lhcutoff, the remaining LSRs beyond that node
are omitted. The threshold lhcutoff is determined as fol-
lows: during the first iteration of the RAxML search al-
gorithm lhcutoff = ∞, which means that no cutoffs are
performed. In the course of this first iteration, the dif-
ferences δi (all(ti), ll(t)) for all i = 1 . . . m alternative tree
topologies ti where all(ti) ≤ ll(t) are stored. The thresh-
old lhcutoff for the next iteration is then set to the average
of δi , i.e., lhcutoff = (

∑m
i=1 δi)/m. If the search computes an

LSR for which all(t′) ≤ ll(t) and δ(all(t′), ll(t)) ≥ lhcutoff,
it will omit the remaining LSRs below the current node
(see Fig. 1). Thus, each iteration k of the search algorithm
uses a threshold value lhcutoff that has been obtained dur-
ing the previous iteration k − 1. This allows for dynamic
adaptation of lhcutoff to the specific dataset and to the
progress of the search. The omission of a large num-
ber of unnecessary LSRs, which will most probably not
improve the tree, yields substantial run time improve-
ments (average 2.5) but returns equally good trees. For a
detailed performance analysis refer to Stamatakis et al.
(2007).

Rapid Bootstrap Search

The rapid bootstrap search starts with the computa-
tion of a stepwise random addition order MP starting
tree on the original alignment (Fig. 2). Thereafter, the
model parameters and branch lengths are optimized on
this starting tree for the original alignment. Maximum
likelihood model parameters will not be reoptimized for
any of the RBS replicates after this initial optimization
on the original alignment. To accommodate rate hetero-
geneity among sites, we used the GTR+CAT approx-
imation, which represents an efficient computational
work-around for the GTR+� model (Stamatakis, 2006a).
The GTR+CAT method is denoted as approximation be-
cause although it provides a “quick and dirty” way to
accommodate rate heterogeneity during the tree search,
the log likelihood values calculated for trees must not
be used for likelihood-based comparisons of topologies.
This means that GTR+CAT is just used as a means to
rapidly navigate into an area of the topological search
space where trees score well under GTR+�. RAxML does
not offer the usage of the plain GTR model without rate
heterogeneity under any search algorithm, because the
vast majority of current-day phylogenetic analyses use

models of rate heterogeneity (Ripplinger and Sullivan,
2008).

We exclusively use the GTR+CAT approximation of
rate heterogeneity for RBS for two reasons: Firstly, the
computational advantages with respect to memory foot-
print and execution times (fourfold reduction in memory
consumption, three to four times lower execution times;
Stamatakis , 2006a), and secondly, because the rapid boot-
strapping procedure, which does not conduct a per repli-
cate model parameter optimization, is less sensitive to
GTR+CAT as opposed to GTR+�, because every align-
ment pattern is assigned 1 of the 25 default rate categories
that can be drawn along with the columns from the orig-
inal alignment for each RBS replicate.

Once the initial tree and optimized model parameters
on the original alignment have been computed, the RBS
method conducts searches on BS replicates as follows: ev-
ery 10th BS replicate r0, r10, r20, . . . is seeded with a new
stepwise random addition order MP starting tree that is
computed on the original alignment to reduce the risk
of navigating into local optima. This means that at every
10th replicate, the program reloads the original align-
ment to compute a randomized stepwise addition MP
starting tree. Once this starting tree has been computed,
the program calculates and loads a bootstrapped align-
ment, which is then optimized under ML. The searches
for the remaining replicates r1 − r9, r11 − r19, . . . start on
the final trees of the respective preceding BS replicates;
i.e., the search on r1 starts on the final tree of r0, the
search for r2 on the final tree of r1, etc. (ri refer to
individual RBS samples). In the context of large-scale
phylogenetic analyses, one drawback of this algorithm
compared to SBS consists in the slightly limited degree
of parallelism due to sequential dependencies from, e.g.,
r0 → r1 → . . . → r9; i.e., 100 replicates can be computed
in parallel on 10 CPUs.

In the following, we describe the actual “quick and
dirty” per replicate search in more detail. In contrast to
the standard RAxML search procedure, where the rear-
rangement radius/setting is determined automatically
(see the on-line supplement of Stamatakis, 2006b, for de-
tails), we use a randomly assigned radius between 5 up
to and including 15. The rationale for not using higher
settings is that 90% of the searches start on the final
tree of the previous search using a distinct alignment
pattern composition, such that it becomes unlikely that
all 10 replicates computed on one starting tree will get
trapped in local optima. The scalability of our approach
to datasets with several thousand sequences (see Tables 1
and 2) without a decrease in correlation values justifies
this approach. In addition, we have set the upper limit
k of iterative LSR applications (LSR for all subtrees of
the current tree) for each replicate to 2 and use a more
strict likelihood cutoff value lhcutoff = 0.5 × (

∑m
i=1 δi)/m

that skips a larger number of LSR descents into subtrees.
Finally, at the end of each LSR cycle, we only evaluate
the five most promising pre-scored trees as opposed to
20 during the standard searches. The above modifica-
tions yield a total run time improvement by a factor of
approximately 15 for bootstrapping.

2008 STAMATAKIS ET AL.— A RAPID BOOTSTRAP ALGORITHM FOR RAXML 761

Compute MP

tree & optimize

model parameters replicate 0
Compute & Infer

Compute & Infer
replicate 1

Compute & Infer
replicate 9

Compute & Infer

Compute & Infer

Compute & Infer

Compute MP tree
replicate 10

replicate 11

replicate 19

use final tree of replicate 0
as starting tree for replicate 1

use final tree of replicate 10
as starting tree for replicate 11

to compute new starting tree
reload original alignment

RBS SEARCH

Fast ML search on

every 5th BS tree

Slow ML search

10 best trees

Thorough LSR search

CAT

GAMMA

best tree

Switching from CAT to GAMMA

ML SEARCH

Compute & Infer
replicate 99

RBS search finished
100 BS trees

ORIGINAL ALIGNMENT BS REPLICATES

FIGURE 2. Outline of the RBS (rapid bootstrap) search algorithm and the successive ML search procedure.

762 SYSTEMATIC BIOLOGY VOL. 57

TABLE 1. Experimental data used and execution time comparison
between RBS (rapid bootstrap) and SBS (standard bootstrap). Column
#SEQS indicates the number of sequences, #PATT the number of dis-
tinct patterns in the alignment that correspond to the length of the
likelihood vectors and compute-intensive for-loops, % Gaps the per-
centage of completely undetermined character states (e.g., N,O,X,?,-
for DNA data) in an ML context, SBS(hrs) indicates the execution time
of SBS in hours for 100 BS replicates, RBS(hrs) the execution time for
100 RBS searches, and Speedup the acceleration achieved by RBS.

SEQS # PATT % Gaps SBS (hrs) RBS (hrs) Speedup

d125 19,436 32.72 128.45 10.52 12.21
d140 AA 1,041 0.60 51.80 5.17 10.02
d140 AA P 1,057 0.60 63.55 5.34 11.89
d150 1,130 4.77 5.31 0.37 14.46
d218 1,846 35.33 18.33 1.18 15.49
d354 348 14.71 4.45 0.30 14.63
d404 7,429 78.92 236.10 16.91 13.96
d404 P 7,444 78.92 259.23 24.08 10.77
d500 1,193 2.48 31.09 1.86 16.72
d628 1,033 36.44 26.47 1.88 14.11
d714 1,231 5.83 48.32 2.86 16.89
d775 AA 3,838 19.35 2673.74 332.67 8.04
d994 3,363 71.39 255.25 14.72 17.34
d1288 1,132 7.53 218.06 14.63 14.91
d1481 1,241 26.58 137.28 9.09 15.10
d1512 1,576 3.02 198.44 13.43 14.77
d1604 1,275 5.71 159.23 8.61 18.48
d1908 1,209 58.38 224.72 12.05 18.64
d2000 1,251 12.98 422.23 21.02 20.08
d2308 1,184 12.71 379.01 28.68 13.21
d2554 1,232 5.81 386.04 29.39 13.13
d4114 1,263 2.00 583.58 39.09 14.93
d6718 1,122 20.87 1235.75 76.02 16.26
d7764 851 20.60 1273.77 72.90 17.47
Averages 2,655 23.26 375.84 30.95 14.73

Rapid ML Search

The accelerated ML search procedure, which is ex-
ecuted after the RBS search, was designed using an
analogous algorithmic engineering approach. The ML
search is executed after the RBS inference because the
ML search can be accelerated by using tree topologies
inferred during the RBS phase (see below). Thus, once
the RBS analyses are finished, the program reloads the
original alignment to conduct an ML search.

Initially, every fifth final RBS tree is used as a starting
tree for a fast ML search (always on the original align-
ment); i.e., if 100 RBS replicates have been computed, 20
fast ML searches will be conducted under GTR+CAT.
After this initial fast search, all 20 final trees are scored
under GTR+� and a more thorough search is applied
to the best-scoring 10 trees. This more thorough search
is once again conducted under GTR+CAT. The final 10
trees of these searches are then scored under GTR+�
again and the best-scoring tree undergoes a final and
more thorough LSR-based optimization under GTR+�.
The thoroughness is due to the usage of a less lazy LSR
mechanism, where a region of branches up to four nodes
beyond the insertion point of a subtree is reoptimized.
The above modifications yield an average speedup of
factor 2.2 compared to 20 standard RAxML searches for
the best-scoring tree.

The RAxML Web Servers

In order to thoroughly test the functionality of
the RAxML Web servers prior to submission of the
manuscript, the availability of the prototype at the Vital-
IT unit of the Swiss Institute of Bioinformatics was an-
nounced at the end of August 2007 via Evoldir, the
RAxML mailing list, and was also posted on the iPhylo
blog of Roderic Page (http://iphylo.blogspot.com/).
From September 3, 2007, to May 18, 2008, 7080 jobs
have been submitted from 766 distinct IP addresses. Dur-
ing this period, we fixed several minor bugs and in-
tegrated additional features with the help of the user
community. The main goal of the Web servers is to keep
things as simple as possible; i.e., provide the capabil-
ity to infer trees for nonexpert users, hence the name
RAxML Black Box. On the Vital-IT job submission page
(see http://phylobench.vital-it.ch/raxml-bb/), one can
select between AA- and DNA-based inference, parti-
tioned models with joint and per partition optimization
of branch lengths, usage of a proportion of invariant sites
estimate, and execution of RBS or a combined RBS and
rapid ML search. Analyses can also be conducted with
multifurcating constraint trees or bifurcating backbone
trees (for details see RAxML manual). The server, which
is attached to a 200-CPU cluster located at the Vital-IT
unit of the Swiss Institute of Bioinformatics, will return
the following result files:

• A file containing all RBS trees.
• An extended majority rule RBS consensus tree.
• The RAxML_info.RUN_ID file containing information

on model parameter estimates and execution times.
• The best-scoring ML tree (if ML inference was

selected).
• The best-scoring ML tree with RBS values (if ML

inference was selected).
• Copies of the best-scoring ML tree with individual

branch lengths for each partition (if ML inference
and per partition branch length optimization were
selected).

The consensus and best-scoring ML trees can be
viewed and browsed online by using a customized ver-
sion of the PHY.FI display engine, http://cgi-www.
daimi.au.dk/cgi-chili/phyfi/go (Fredslund, 2006). The
CIPRES RAxML Web server has been set up in an
analogous way (see http://8ball.sdsc.edu:8889/cipres-
web/Bootstrap.do).

Availability: http://icwww.epfl.ch/˜stamatak/index-
Dateien/software/RAxML-VI-HPC-4.0.0.tar.gz

Web Servers: http://phylobench.vital-it.ch/raxml-bb/
http://8ball.sdsc.edu:8889/cipres-web/Bootstrap.do

RESULTS

To test the performance and relative accuracy of RBS
with respect to SBS as well as to BS values obtained
via competing programs, we used 22 real-world AA and

2008 STAMATAKIS ET AL.— A RAPID BOOTSTRAP ALGORITHM FOR RAXML 763

TABLE 2. BS support value comparison RBS versus SBS. Column #SEQS indicates the dataset, CorrBest denotes the Pearson correlation
coefficient ρ on the best-scoring ML tree, Slope the slope of the linear regression function, Intercept the intercept point of the linear regression
function (the worst possible intercept would be ±100), CorrAll the Pearson correlation between all bipartitions/splits induced by the BS replicates,
Slope the slope of the linear regression function for all splits (the intercept was omitted because it ranged only between −0.013 and + 0.001),
SBS(Bips) and RBS(Bips) the total number of bipartitions detected by SBS and RBS, respectively, RF the relative RF-distance (Robinson-Foulds
distance) between extended majority rule consensus trees for RBS, and SBS, and finally WRF the analogous weighted RF distance.

SEQS CorrBest Slope Intercept CorrAll Slope SBS(Bips) FBS(Bips) RF WRF

d125 0.917 1.06 −6.82 0.988 1.02 164 156 0.02 0.03
d140 AA 0.990 0.99 −0.18 0.997 1.01 425 387 0.06 0.03
d140 AA P 0.985 1.05 −5.16 0.996 1.00 435 417 0.07 0.03
d150 0.984 0.99 −1.02 0.989 1.02 1,785 1,419 0.13 0.06
d218 0.978 0.99 −3.23 0.981 1.03 3,427 2,555 0.17 0.05
d354 0.976 0.97 −1.55 0.972 1.02 8,811 7,781 0.23 0.05
d404 0.958 0.96 2.67 0.973 0.98 5,394 5,245 0.16 0.04
d404 P 0.967 0.97 1.01 0.977 0.99 5,480 5,501 0.14 0.04
d500 0.975 0.99 −2.38 0.988 1.02 5,751 4,637 0.10 0.04
d628 0.963 0.96 0.23 0.977 0.99 8,405 7,616 0.15 0.05
d714 0.972 0.99 −2.76 0.985 1.02 7,593 6,484 0.11 0.04
d775 AA 0.978 0.97 2.36 0.993 1.01 3,806 3,506 0.07 0.03
d994 0.972 1.03 −4.75 0.988 1.02 8,352 6,648 0.08 0.03
d1288 0.964 0.99 −2.69 0.983 1.02 15,150 12,141 0.11 0.03
d1481 0.969 0.95 1.77 0.974 0.99 27,882 27,122 0.20 0.04
d1512 0.985 0.99 −1.66 0.987 1.01 25,277 22,783 0.11 0.02
d1604 0.973 0.99 −1.79 0.981 1.00 22,320 21,027 0.13 0.03
d1908 0.982 0.99 −1.64 0.987 1.01 26,835 24,333 0.12 0.03
d2000 0.980 0.99 −1.95 0.981 1.02 39,891 33,965 0.13 0.03
d2308 0.979 1.00 −1.73 0.992 1.01 17,252 14,945 0.07 0.02
d2554 0.980 0.99 −2.04 0.987 1.02 34,555 30,139 0.09 0.02
d4114 0.977 0.98 −1.71 0.975 1.00 88,766 74,802 0.18 0.04
d6718 0.975 0.96 0.10 0.972 0.99 170,176 155,342 0.19 0.03
d7764 0.977 0.96 −0.021 0.966 0.99 248,130 229,290 0.22 0.03
Averages 0.972 0.99 2.33 0.983 1.008 32,335 29,093 0.13 0.04

DNA alignments containing 125 up to 7764 sequences.
Although analyses of datasets with more than 500 taxa
are still relatively uncommon, from an algorithmic point
of view, it is important to demonstrate the scalability of
both RBS accuracy as well as execution times with respect
to the number of taxa. Eight out of 173 jobs submitted to
the Vital-IT Web server in February 2008 contained more
than 500 taxa, with the largest dataset comprising 5319
sequences (the average number of sequences was 125,
whereas the average number of sequences per alignment
out of 400 jobs on the CIPRES Web server amounted to
134). The number of unique alignment site patterns in
our test data ranges from 348 to 19,436 and the percent-
age of completely undetermined characters (N,O,X,?,-
for DNA data and X,?,-,* for protein data) from 0.6%
to 79%. The number of alignment columns has deliber-
ately been omitted, because it is irrelevant with respect to
the computational cost and does not represent an impor-
tant measure of alignment size, especially with respect
to memory consumption. The taxon names in the align-
ments have been anonymized to protect unpublished
data. We removed all duplicate sequences as well as
all entirely undetermined columns from the alignments.
For the sake of simplicity, alignments will henceforth be
referenced by the number of taxa, preceded by a “d”
as provided in the first column of Table 1. The experi-
mental data span a broad range of organisms including
rbcL genes (d500, d2554), mammalian sequences (d125,
d1288, d2308), bacterial and archaeal sequences (d714,
d994, d1481, d1512, d1604, d2000, d4114, d6718, d7764),

ITS sequences (d354), fungal sequences (d628, d1908),
grasses (d404), as well as AA sequences (denoted as AA)
of papillomaviruses (d140) and fishes (d775). For two
multigene alignments (d140 and d404), we also assessed
RBS performance under a partitioned model with joint
branch length estimate (denoted as P).

Computational experiments were conducted on
the CIPRES project (http://www.phylo.org) clus-
ter at the San Diego Supercomputer Center and
the Infiniband cluster (http://www.lrr.in.tum.de/
Par/arch/infiniband/) at the Technische Universität
München, which are equipped with 16 eight-way
SMP (symmetric multiprocessing) nodes (128 CPUs
total) and 36 four-way SMP nodes (144 CPUs to-
tal), respectively. Both systems are based on AMD
2.4-GHz Opteron processors. All result files, scripts,
and datasets used in this study are available for
download at http://icwww.epfl.ch/˜stamatak/RAPID-
RESULTS.tar.bz2.

Computational experiments were performed as fol-
lows: for each dataset we conducted 100 sequential SBS
runs with RAxML and a fixed BS random number seed
via -b 12345. Thereafter, we conducted RBS runs on the
same 100 BS replicates with -x 12345. Although not re-
quired, these random number seeds were kept constant
across datasets (not only across RBS/SBS runs for the
same dataset) to simplify the scripts as well as to fa-
cilitate reproducibility. The only exceptions are datasets
d4114, d6718, d7764, and d775 AA where SBS was ex-
ecuted using the parallel version of RAxML due to the

764 SYSTEMATIC BIOLOGY VOL. 57

long run times. In these four cases SBS trees were in-
ferred for different BS replicates than the respective RBS
trees.

All BS inferences were conducted under the
GTR+CAT (DNA) and WAG+CAT (AA) approximation
of rate heterogeneity, which represents an efficient com-
putational work-around for GTR+� (Stamatakis, 2006a,
2006b). In addition, we executed 20 independent ML
searches on 20 randomized stepwise addition maximum
parsimony trees under GTR+CAT using the standard
RAxML search algorithm. Final trees were scored un-
der GTR+�; e.g., raxmlHPC -m GTRMIX -s 500 -# 20
-n 500.ML (for details refer to the RAxML Manual at
http://icwww.epfl.ch/ stamatak). The best-scoring tree
out of these 20 standard ML searches was determined by
analyzing the result files.

ML searches in conjunction with the RBS algo-
rithm were conducted in a single run with RBS;
e.g., raxmlHPC -f a -x 12345 -p 12345 -m GTRCAT
-s 500 -# 100 -n 500.RAPID. The option -p provides
a random number seed for the—in this case 100/10 =
10—MP starting trees, such that our RBS experi-
ments can be fully reconstructed. The RBS algo-
rithm directly returns the best ML tree (scored under
GTR+�) on the original alignment in a file called, e.g.,
RAxML_bestTree.500.RAPID. Finally, we conducted ad-
ditional experiments on selected datasets to assess the
effects of using, e.g., GTR+CAT instead of GTR+�, the
likelihood cutoff procedure, and distinct sets of BS repli-
cates. These experiments show that no bias is introduced
by the plethora of approximations used in RAxML.

Result analysis.—The resulting BS trees from the
RBS and SBS analyses were compared as follows:
we mapped the bipartition support values (using the
respective RAxML option -f b) to the best-scoring ML
tree found by RAxML either during the 20 standard ML
searches or via the rapid ML search after the RBS phase;
i.e., the best out of these 21 trees. We then computed the
Pearson correlation coefficient ρ between corresponding
pairs of RBS and SBS support values on the best-scoring
ML tree. In addition, we computed the slope and
intercept of the respective linear regression function.
We also extracted the RBS- and SBS-based frequencies
for all bipartitions inferred either by RBS or SBS (using
the RAxML option -f m and passing the SBS and RBS
BS tree files as parameters) and computed the Pearson
correlation coefficient of the resulting bipartition fre-
quency pairs. In addition, we counted the total number
of distinct bipartitions induced by the SBS and RBS
replicates. Finally, we computed the extended majority-
rule consensus tree (a bifurcating tree) for SBS and RBS
replicates using consense from the PHYLIP package.
The relative Robinson-Foulds (RF, Robinson and Foulds,
1981) distance between the consensus trees was com-
puted with treedist from PHYLIP and the weighted
relative RF distance (WRF; Robinson and Foulds,
1979) with partitionMetric.pl by Olaf Bininda-
Emonds (available at http://www.personal.uni-
jena.de/b6biol2/ProgramsMain.html; see also Hillis
et al., 2005, for an application of RF and WRF distances).

The standard, unweighted RF distance between two
topologies counts the number of clades found in one
tree or the other but not in both of them. Each unique
clade counts one in the unweighted case. The weighted
RF distance uses the support value of the clade in-
stead; i.e., it uses the complete information provided
by a majority rule consensus tree. Thus, a clade with
a bootstrap value of 0.4 counts 0.4 instead of 1. There-
fore, poorly supported clades do not increase the RF as
much as better supported ones. This weighted topolog-
ical distance measure between extended majority-rule
consensus trees takes into account the support values
and penalizes incongruent subtrees with low support to
a lesser extent. When RF distances, as in our experiments
(see columns RF and WRF in Table 2), are significantly
larger (approximately a factor 3 on average) than their
weighted counterparts, this indicates that the differences
in the consensus trees are induced by subtrees with low
support. An extreme example for this phenomenon is
d354, a relatively short and hard to analyze ITS dataset
(Grimm et al., 2006), where the weighted RF distance
is almost five times lower than the respective plain RF
distance.

Comparison of RBS versus SBS

Tables 1 and 2 provide the relevant alignment di-
mensions and data on inference times as well as the
aforementioned metrics for quantification of differences
between SBS and RBS support values. Scatterplots of
RBS and SBS values on the best-scoring tree as well
as for all bipartitions (splits) detected by RBS and
SBS replicates for all test alignments are available at
http://icwww.epfl.ch/˜stamatak/results.html. We also
provide plots for the RBS and SBS support value distri-
bution and indicate the average support values on the
respective best-scoring tree. Therefore, we only include
exemplary plots for the dataset with the worst correla-
tion coefficient (d125; Fig. 3a to c), the best correlation
coefficient (d140; Fig. 4a), the largest dataset analyzed in
terms of inference times (d775; Fig. 4b), and the dataset
with the worst weighted RF distance (d150; Fig. 4c).

The only dataset (d125) that shows ρ < 0.95 (denoted
as CorrBest in Table 2) for SBS and RBS values on the best-
scoring tree is a long multi-gene alignment, which has an
unusually high average node support of 0.966 (RBS) and
0.948 (SBS), respectively. In addition, as depicted in Fig-
ure 3a, the deviation in BS proportions that causes the
relatively low ρ value is due to the few nodes that have
a BS value < 0.95. The distribution of support values for
alignment d125 is provided in Figure 3c. Figure 3b pro-
vides a scatterplot for the frequencies of all bipartitions
(all splits) detected by SBS or RBS: the correlation is 0.988.
Whereas the correlation coefficient on the best-scoring
tree is low, the plain and weighted RF distances (0.02 and
0.03) between majority-rule consensus trees are among
the lowest recorded in our experiments. Dataset d125 ex-
hibits the smallest difference between the weighted and
unweighted RF distances of consensus trees; i.e., the BS
consensus topology is stable.

2008 STAMATAKIS ET AL.— A RAPID BOOTSTRAP ALGORITHM FOR RAXML 765

a)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

S
T
A

N
D

A
R

D
 B

S

RAPID BS

b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
T
A

N
D

A
R

D
 B

S

RAPID BS

c)

 0

 25

 50

 75

 100

 125

 0 25 50 75 100

N
u

m
b

e
r

o
f

N
o

d
e

s

Support Value

"125.corr_rapid"
"125.corr_standard"

FIGURE 3. Detailed analysis of RBS and SBS support values for
dataset d125. (a) Scatterplot for SBS (standard bootstrap) and RBS val-
ues drawn on the best–scoring ML tree for d125 (DNA). (b) Scatterplot
for SBS and RBS bipartition frequencies for all bipartitions found by
SBS or RBS for d125 (DNA). (c) Distribution of SBS and RBS support
values on best-scoring ML tree for d125 (DNA).

As further examples, we included support value
plots on the best-scoring tree for datasets d775 (AA;
Fig. 4b) and d150 (DNA; Fig. 4c). Dataset d775 (AA)
represents the largest matrix analyzed in this study
in terms of memory footprint and inference times,
whereas d150 exhibits the largest weighted RF distance.
Finally, the 140-sequence protein dataset of papillo-
maviruses yielded the highest correlation between RBS
and SBS values on the best-scoring tree (Fig. 4a). An
interesting observation is that both AA alignments
have relatively high average support (> 0.85) under
partitioned as well as unpartitioned models, which
appears to confirm the empirical observation that AA
alignments yield more stable topologies than DNA data.
Except for dataset d404 under a plain, unpartitioned
model, the average support values obtained via RBS
are slightly higher than those obtained via SBS (see

a)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

S
T
A

N
D

A
R

D
 B

S

RAPID BS

b)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

S
T
A

N
D

A
R

D
 B

S

RAPID BS

c)

 0

 0.25

 0.5

 0.75

 1

 0 0.25 0.5 0.75 1

S
T
A

N
D

A
R

D
 B

S

RAPID BS

FIGURE 4. Scatterplot for SBS and RBS values drawn on the best-
scoring ML tree for (a) d140 (AA), (b) d775 (AA), (c) d150 (DNA).

http://icwww.epfl.ch/˜stamatak/results.html). The
higher amount of total bipartitions (columns SBS(Bips)
and RBS(Bips) in Table 2) detected by SBS compared
to RBS as well as the slightly higher average support
obtained via RBS is due to the increased locality of RBS
searches, which only initiate 10% of total searches on a
new starting tree and conduct a smaller number of less
exhaustive LSR cycles per search/replicate. Another
important conclusion that can be drawn from Tables 1
and 2 is that RBS execution times as well as measures of
relative accuracy scale well with increasing number of
taxa.

Impact of Parameters and Approximations on RBS
and SBS Values

We assessed the effect of RAxML program param-
eters and approximations, particularly the usage of
GTR+CAT, on the support values. The partially “odd”
number of replicates used in these experiments is due to
a run-time limitation of 60 hours on the cluster located

766 SYSTEMATIC BIOLOGY VOL. 57

at the Technical University of Munich. Initially, we ana-
lyzed the effect of an increased number of replicates on
relative accuracy. The correlation between RBS and SBS
for 1000 RBS replicates on dataset d714 increases to 0.985
compared to 0.972 on 100 replicates. We make the same
observation for 1000 replicates on alignment d628, where
ρ increases by 0.012 to 0.975. The correlation on the best
tree for d2000 with 934 SBS and RBS replicates also in-
creases by 0.012 to 0.992. In general, there is a trend for
the correlation between RBS and SBS to increase with the
number of replicates. Thereafter, we investigated the im-
pact of the GTR+CAT approximation compared to anal-
yses under GTR+�. The correlation of 359 SBS replicates
under GTR+� on dataset d1288 with 359 RBS replicates
(always GTR+CAT) amounts to 0.970; i.e., improves by
0.006 with respect to 100 SBS/RBS replicates under CAT.
The correlation on the best-scoring tree of 1000 RBS repli-
cates on data set d125 compared to 802 SBS replicates
under GTR+� is 0.98, which represents a significant
improvement compared to 0.917 on 100 replicates. The
general tendency for correlation values to improve with
the number of replicates does not seem to depend on
whether � or CAT is used. We also computed the correla-
tion between 100 replicates under the SBS algorithm with
GTR+� and 100 replicates under GTR+CAT for SBS as
well as RBS for the following datasets: d150, d218, d404,
d500, d628, d714, d1481, d1604. The average correlation
between SBS analyses under GTR+� and GTR+CAT
was 0.980 (minimum: 0.976, maximum: 0.987). The av-
erage correlation between SBS analyses under GTR+�

TABLE 3. Performance of standard and rapid RAxML ML searches and full SBS/RBS ML analyses. Column SLH provides the log likelihood
of the best scoring tree found during these 20 searches, whereas column RLH indicates the respective log likelihood obtained by the accelerated
ML search. Column SLH(hrs) and RLH(hrs) report the respective ML inference times in hours, Speedup shows the acceleration factor achieved
for the ML search, whereas Better? indicates whether the tree obtained via the rapid search had a better log likelihood score than the best tree of
the slow searches. Execution times for the combined BS and ML searches are provided in column SF(hrs) for SBS and standard ML, RF(hrs) for
RBS and rapid ML. Finally, column SpeedupF provides the overall speedup of RBS over SBS for a full ML analysis, including BS inference and
ML search.

#SEQS SLH RLH SLH(hrs) RLH(hrs) Speedup Better? SF(hrs) RF(hrs) SpeedupF

d125 −825,204.83 −825,204.83 66.57 14.01 4.75 equal 195.02 24.54 7.95
d140 AA −121,810.45 −121,809.52 15.80 11.46 1.38 yes 67.60 16.63 4.06
d140 AA P −121,482.21 −121,481.58 19.08 12.93 1.48 yes 82.62 18.28 4.52
d150 −39,601.59 −39,600.94 1.75 0.77 2.26 yes 7.06 1.14 6.19
d218 −134,157.15 −134,152.30 5.78 3.32 1.74 yes 24.11 4.50 5.36
d354 −6,561.96 −6,560.88 1.42 0.77 1.84 yes 5.87 1.08 5.46
d404 −156,128.23 −156,115.25 133.31 35.16 3.79 yes 369.41 52.07 7.09
d404 P −154,067.20 −154,054.75 98.23 54.19 1.81 yes 357.46 78.27 4.57
d500 −85,787.22 −85,778.11 8.54 4.22 2.02 yes 39.63 6.08 6.52
d628 −50,866.93 −50,858.99 7.54 4.54 1.66 yes 34.01 6.42 5.30
d714 −148,516.26 −148,491.64 15.73 6.74 2.33 yes 64.05 9.60 6.67
d994 −348,825.66 −348,803.74 103.97 46.38 2.24 yes 359.22 61.10 5.88
d1288 −395,859.80 −395,926.96 71.53 28.57 2.50 no 289.59 43.20 6.70
d1481 −197,450.53 −197,371.61 48.71 27.70 1.76 yes 185.99 36.78 5.06
d1512 −273,396.87 −273,409.64 60.11 42.35 1.42 no 258.56 55.78 4.64
d1604 −167,320.22 −167,286.47 51.28 27.18 1.89 yes 210.52 35.79 5.88
d1908 −149,607.38 −149,573.19 65.84 26.25 2.51 yes 290.57 38.30 7.59
d2000 −364,813.48 −364,847.60 114.60 60.31 1.90 no 536.82 81.34 6.60
d2308 −449,780.13 −449,928.70 114.66 51.35 2.23 no 493.67 80.03 6.17
d2554 −318,436.87 −318,463.68 96.14 46.99 2.05 no 482.19 76.38 6.31
d4114 −325,441.86 −325,420.85 250.39 101.99 2.46 yes 833.97 141.07 5.91
d6718 −481,080.68 −481,203.10 466.87 178.36 2.62 no 1,702.62 254.38 6.69
d7764 −498,458.40 −498,235.53 467.83 164.85 2.84 yes 1,741.60 237.75 7.33
Averages −252,811.13 −252,807.82 99.38 41.32 2.24 375.31 59.15 6.02

and RBS analyses under GTR+CAT was 0.964 (mini-
mum: 0.953, maximum 0.980). The correlation between
�-based SBS analyses and CAT-based RBS analyses de-
creases insignificantly compared to the results in Table 2.

In addition, we also determined the impact of the like-
lihood cutoff heuristics. We computed 100 SBS repli-
cates without cutoff heuristics and compared them to
the respective SBS/RBS analyses with cutoff on the best-
scoring trees for datasets d500 (SBS: 0.997, RBS: 0.972)
and d628 (SBS: 0.995, RBS: 0.963). In this experiment,
correlation coefficients also change insignificantly when
RBS values are compared to SBS values inferred with and
without cutoff. Finally, we quantified the effect of using
a distinct set of BS replicates. The variation among SBS
support values on two distinct sets of 100 bootstrap repli-
cates (different random number seed passed via -b) was
analyzed on the following 11 datasets: d125, d140, d150,
d218, d354, d404, d500, d628, d714, d994, d1908. The av-
erage correlation for SBS inferences on distinct sets of 100
replicates was 0.988 (minimum: 0.987, maximum 0.990).
These values do not differ significantly from those ob-
tained by comparing SBS to RBS support values on 100
replicates. Thus, the variation observed between 100 RBS
and SBS samples is similar to the effect of using a distinct
set of SBS replicates.

Performance of Rapid ML Search

Table 3 reports performance data for the accelerated
ML search that is conducted after RBS compared to 20

2008 STAMATAKIS ET AL.— A RAPID BOOTSTRAP ALGORITHM FOR RAXML 767

standard RAxML tree searches on 20 distinct MP start-
ing trees. In addition, it provides the accumulated infer-
ence times; i.e., SBS plus time for standard ML search
and RBS plus time for rapid ML search, as well as the
overall speedup attained by the new algorithm for full
ML searches. In 18 out of 25 cases, the rapid ML search
algorithm yields a tree with a better score than the 20
standard ML searches. The average speedup with respect
to these 20 standard ML searches is 2.2. We did not exe-
cute a rapid ML search on the d775 AA dataset, due to
the long sequential execution time, even under the ac-
celerated algorithm. The average speedup for complete
BS and ML analyses over all datasets is 6.28. For the two
largest datasets (d6718 and d7764), this represents a re-
duction of inference times from more than 2 months to
10 days on a single CPU. It is important to note that the
overall speedup for a full ML analysis will further in-
crease in favor of RBS if an appropriate, larger number
of BS replicates is conducted.

Comparison with PHYML and GARLI

Tables 4 and 5 provide an execution time and
support value comparison of RBS/SBS with PHYML
v2.4.5 (Guindon and Gascuel, 2003) and GARLI
v0.951 (Zwickl, 2006) on several randomly selected
smaller datasets that kept the required execution times
for 100 replicates within acceptable limits. PHYML and
GARLI BS searches were conducted on the same BS repli-
cates as the RAxML RBS/SBS searches that were gener-
ated with RAxML via -f j -b 12345 -# 100. In Table 1
we also provide a comparison of GARLI and PHYML
support values with RAxML SBS support under GTR+�
in order to assess whether the usage of GTR+CAT has a
notable effect on the correlation.

As can be derived from the correlation coeffi-
cients (CBest-SBS/CBest-RBS) and weighted RF (WRF-
SBS/WRF-RBS) distances in Tables 4 and 5, GARLI
support values correlate better with RAxML RBS as well
as SBS support values than PHYML BS values. This
is due to the NNI search algorithm in PHYML, which
tends to get trapped in local optima earlier than RAxML

TABLE 4. Computational performance and support value comparison between 100 SBS/RBS and PHYML/GARLI bootstrap analyses. Col-
umn PHYML(hrs)/GARLI(hrs) provides the execution time for 100 BS replicates, RF-SBS/RF-RBS the RF distance between SBS/RBS and the
respective PHYML/GARLI consensus trees, and WRF-SBS/WRF-RBS the weighted topological distance between SBS/RBS and PHYML/GARLI
consensus trees. Finally, column Speedup provides the run time acceleration achieved by RBS over PHYML and GARLI, respectively. We also
indicate the average support values for SBS Avg(S), RBS Avg(R), PHYML Avg(P), and GARLI Avg(G).

#SEQS PHYML (hrs) RF-SBS WRF-SBS RF-RBS WRF-RBS Speedup Avg(P) Avg(S) Avg(R)

d150 6.93 0.24 0.11 0.24 0.12 18.87 0.59 0.63 0.65
d628 61.66 0.23 0.09 0.26 0.11 32.88 0.52 0.58 0.59
d714 67.29 0.34 0.14 0.33 0.14 23.52 0.54 0.63 0.66
d1481 820.73 0.35 0.10 0.36 0.11 90.29 0.44 0.52 0.53
d1604 307.11 0.25 0.08 0.27 0.09 35.65 0.52 0.56 0.59
#SEQS GARLI (hrs) RF-SBS WRF-SBS RF-RBS WRF-RBS Speedup Avg(G) Avg(S) Avg(R)

d404 1258.98 0.16 0.05 0.17 0.05 74.44 0.59 0.58 0.58
d714 182.91 0.16 0.06 0.17 0.07 63.92 0.63 0.63 0.66
d714 SPR=12 219.17 0.16 0.06 0.19 0.08 76.60 0.63 0.63 0.66
d1288 771.87 0.13 0.04 0.14 0.05 53.78 0.68 0.65 0.68
d1604 1085.07 0.27 0.07 0.26 0.08 125.96 0.53 0.56 0.59

TABLE 5. Support value comparison between 100 SBS/RBS and
PHYML/GARLI bootstrap analyses. Column CBest-SBS/CBest-RBS
provides the correlation of SBS/RBS and PHYML/GARLI support val-
ues on the best-scoring ML tree, column CBest-SBS(GAMMA) the cor-
relation of SBS support values under GTR+� with PHYML and GARLI
on the best-scoring ML tree. Finally, in columns Slope and Intercept we
report the slope and intercept of the linear regression function between
SBS under GTR+� and PHYML/GARLI respectively.

CBest-SBS
#SEQS CBest-SBS CBest-RBS (GAMMA) Slope Intercept

d150 0.935 0.923 0.933 1.03 −4.40
d628 0.904 0.896 0.898 0.99 −2.88
d714 0.829 0.782 0.834 0.97 −6.11
d1,481 0.900 0.884 0.891 0.98 −5.70
d1,604 0.923 0.898 0.913 1.01 −4.24

CBest-SBS
#SEQS CBest-SBS CBest-RBS (GAMMA) Slope Intercept

d404 0.968 0.940 0.964 0.95 4.61
d714 0.923 0.912 0.922 0.97 3.24
d714 SPR=12 0.923 0.908 0.923 0.96 3.57
d1288 0.958 0.947 0.975 0.99 −0.74
d1604 0.872 0.890 0.882 0.95 −0.05

and GARLI (Stamatakis et al., 2005a; Stamatakis, 2006b;
Morrison, 2007). In addition, the average support ob-
tained by PHYML (column AVG(P) in Table 4) is sig-
nificantly lower than the values obtained via RAxML
and GARLI. The data in Table 5 (columns CBest-RBS,
CBest-SBS, CBest-SBS(GAMMA)) indicate that the usage
of GTR+CAT or GTR+� in RAxML has no notable ef-
fect on the correlation between RAxML and PHYML
support values; i.e., the differences in the degree of ex-
haustiveness of the respective search algorithms have a
higher impact on BS values than model details. GARLI
and RAxML yield qualitatively comparable trees on
medium-sized alignments up to 1000 to 1500 taxa. The
only datasets where the correlation between GARLI
and SBS/RBS support values is below 0.90 has more
than 1500 sequences. The usage of SBS under GTR+�
yields a slightly better correlation for d1288 (column
CBest-SBS(GAMMA) in Table 5), whereas it is slightly
worse than either SBS under GTR+CAT or RBS on
datasets d404, d714, d1604. An important result from

768 SYSTEMATIC BIOLOGY VOL. 57

a)

 0

 25

 50

 75

 100

 0 25 50 75 100

P
H

Y
M

L
 B

S

RAPID BS

b)

 0

 25

 50

 75

 100

 0 25 50 75 100

G
A

R
L
I
B

S

RAPID BS

c)

 0

 25

 50

 75

 100

 0 25 50 75 100

G
A

R
L
I
B

S

STANDARD BS GTR+GAMMA

d)

 0

 25

 50

 75

 100

 0 25 50 75 100
S

T
A

N
D

A
R

D
 B

S
 G

T
R

+
G

A
M

M
A

RAPID BS

FIGURE 5. Comparison of RBS support values with RAxML SBS, GARLI, and PHYML support values under GTR+�. (a) Superimposed
scatterplots for RBS and PHYML BS values for datasets d150, d628, d714, d1481, and d1604 on the respective best-scoring trees. (b) Superimposed
scatterplots for RBS and GARLI BS values for datasets d404, d714, d1288, and d1604 on the respective best-scoring trees. (c) Superimposed
scatterplots for SBS BS values under GTR+� and GARLI BS values for datasets d404, d714, d1288, and d1604 on the respective best-scoring trees.
(d) Superimposed scatterplots for RBS and SBS BS values under GTR+� for datasets d150, d404, d628, d714, d1288, and d1604 on the respective
best-scoring trees.

the comparisons of RBS/SBS with PHYML is that the
effect of the approximations used to obtain RBS sup-
port values is less prevalent than the differences in-
duced by the distinct search strategies. The comparison
with GARLI shows that the average variation of sup-
port values among SBS(GTR+CAT)/SBS(GTR+�) and
RBS support values is within the same order of mag-
nitude as the variation induced by using the different,
though equally thorough, GARLI search algorithm. This
justifies the claim that the deviations between RBS and
SBS as well as SBS under GTR+� support values are
small. In Figure 5a we provide superimposed scatter-
plots of RBS versus PHYML support values for datasets
d150, d628, d714, d1481, and d1604 on the respective best-
scoring trees. In the analogous Figures 5b and c, we plot
GARLI BS over RBS values and SBS(GTR+�) values, re-
spectively, for datasets d404, d714, d1288, and d1604. In
Figure 5d we provide superimposed plots for RBS versus
SBS under GTR+� on datasets d150, d404, d628, d714,
d1288, and d1604. Figures 5a to d show that the overall
correspondence of support values is best between RBS
(always under GTR+CAT) and SBS under GTR+�.

Finally, we summarize RBS execution time improve-
ments over SBS, PHYML, and GARLI on all DNA
datasets used in this study in Figure 6. Figure 6 shows
the development of RBS, SBS, PHYML, and GARLI ex-
ecution times over the number of taxa in the align-
ments (note the log-scale on the y-axis). For some

of the larger datasets, PHYML (d1908, d2000, d2308,
d2554) and GARLI (d2000, d4114, d6718) BS inference
times were estimated on the basis of the time required
for five replicates due to excessively long run times.
PHYML crashed for d4114, d6718, and d7764, despite

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 1000 2000 3000 4000 5000 6000 7000 8000

L
o

g
 S

c
a

le
: T

im
e

(S
e

c
o

n
d

s
)

Number Of Sequences

"GARLI-BOOTSTRAP"
"PHYML-BOOTSTRAP"

"STANDARD-BOOTSTRAP"
"RAPID-BOOTSTRAP"

FIGURE 6. Inference times for 100 BS replicates with RAxML(SBS),
RAxML(RBS), PHYML, and GARLI on DNA datasets; times scaled
linearly to 1000 distinct alignment patterns for easier comparability.
Note the log-scale on the y-axis.

2008 STAMATAKIS ET AL.— A RAPID BOOTSTRAP ALGORITHM FOR RAXML 769

setting N_MAX_OTU 10000 in the PHYML source file
utilities.h; dataset d4114 crashed at the start of the
BS inference, d6718 and d7764 crashed during model pa-
rameter optimization.

All execution times have been scaled up or down lin-
early to a length of 1000 distinct column patterns to facil-
itate comparability. This is not an exact scaling, because
inference times do not increase linearly with alignment
length due to decreased cache efficiency (Stamatakis
et al., 2005b), but serves illustrative purposes well at
this point. Another issue that is highlighted by the rela-
tively uneven plot is that certain real-world alignments
are “harder” to infer than others. Figure 6 illustrates that
RAxML scales well with the number of taxa and that the
RBS algorithm is two orders of magnitude faster than the
qualitatively comparable GARLI algorithm.

DISCUSSION

Significant progress has been achieved over the last
years in the field of heuristic ML search algorithms with
the release of programs, such as IQPNNI (Minh et al.,
2005), PHYML (Guindon and Gascuel, 2003; Hordijk and
Gascuel, 2005), TREEFINDER (Jobb et al., 2004), TREE-
PUZZLE (Strimmer and von Haeseler, 1996; Schmidt
et al., 2002), GARLI (Zwickl, 2006), DPRML (Keane et al.,
2005), PHYNAV (Vinh et al., 2005), LeaPhy (Whelan,
2007), and RAxML (Stamatakis et al., 2005a; Stamatakis,
2006b). A recent performance study (Stamatakis, 2006b)
reveals that RAxML outperforms PHYML, GARLI,
IQPNNI, and MrBayes (Ronquist and Huelsenbeck,
2003) in terms of speed, accuracy, and memory con-
sumption on alignments with more than 1000 sequences.
GARLI performs equally well with respect to accuracy
and speed for up to 1000 to 2000 sequences but scales
significantly worse on datasets with several thousand
taxa. With the rapid bootstrap (RBS) heuristics intro-
duced here, RAxML required about 24 hours on a sin-
gle CPU to compute 100 BS replicates for a multigene
alignment of 404 sequences (d404) with 11 partitions
and a joint branch length estimate, whereas an unpar-
titioned analysis of the same dataset required 52 days
with GARLI. Although analyses of large single-gene
datasets of more than 1000 sequences as used in our com-
putational experiments are still relatively uncommon,
memory requirements of ML programs are becoming in-
creasingly important in the context of multi-gene analy-
ses (see, for instance, McMahon and Sanderson, 2006,
or Dunn et al., 2008). Memory-wise, such single-gene
analyses with thousands of taxa roughly correspond to
large multi-gene analyses with hundreds of sequences
and several genes. For example, PHYML cannot han-
dle the large real-world AA dataset of 775 protein se-
quences of fishes. The accuracy of PHYML is expected
to be improved by the integration of the fast SPR move
technique (Hordijk and Gascuel, 2005) into PHYML v3.0.
However, the prerelease version of PHYML v3.0 could
not be used in the current study because it was still unsta-
ble at the time the computational experiments were con-
ducted (September/October 2007). Therefore, the results

in this article are all based on PHYML v2.4.5. The usage
of the less exhaustive topological search mechanism im-
plemented in PHYML v2.4.5 also allowed us to compare
the RBS support values with SBS and GARLI BS values
on one hand and values obtained via a significantly less
powerful NNI-based search strategy on the other; i.e.,
to determine whether RBS values are more similar to
SBS/GARLI values or PHYML values and thereby de-
vise a notion of relative accuracy.

Web servers.—There already exist several Web servers
for inference of phylogenetic trees. The Cipres portal
service (http://www.phylo.org/sub sections/portal/)
currently offers computations with GARLI, MrBayes,
PAUP* (Swofford, 2002), and RAxML. However, the ini-
tial version of the portal did not provide the possibility
to conduct bootstrap analyses due to run time and re-
source limitations. There also exist several Web servers
based on PHYML. The server located at LIRMM (Lab-
oratoire d’Informatique, de Robotique et de Microelec-
tronique de Montpellier; http://atgc.lirmm.fr/phyml/)
offers the current official release of PHYML (Guindon
et al., 2005). This Web server uses 16 CPUs and appears to
be heavily loaded. Two more comprehensive approaches
that use PHYML as well as numerous related programs,
including complete analysis pipelines, are Phylogeny.fr
(Serious Phylogenetic Analysis For The Non-Specialist;
http://www.phylogeny.fr/) and PHYLEMON (Tarraga
et al., 2007; http://phylemon.bioinfo.cipf.es/). Finally,
Keane et al. (2007) have recently launched a Web server
for MultiPhyl. The main advantage of our Web services
in comparison to the services mentioned above is that
we can achieve a significantly higher throughput for
full ML analyses on alignments of almost arbitrary size,
by using two medium-sized clusters with a total of 328
CPUs in combination with the RBS algorithm. However,
those 328 CPUs are not exclusively used for phylogenetic
inferences with RAxML; i.e., scheduling delays can oc-
cur. In addition, as outlined by our results, RBS yields
qualitatively similar results to SBS and GARLI as well as
better ML trees compared to PHYML v2.4.5.

Fast methods for computation of support values.—Be-
cause BS analysis represents a well-known computa-
tional bottleneck, faster approaches for computation of
support values or statistics under maximum likelihood,
such as the usage of randomized estimated log likeli-
hoods (RELLs, Waddell et al., 2002) to approximate BS
support values or the approximate likelihood-ratio test
(aLRT; Anisimova and Gascuel, 2006) have been pro-
posed. Although RELLs can also be used for likelihood-
based tests of topologies (Goldman et al., 2000), Waddell
et al. (2002) explicitly analyzed its usage as a fast ap-
proximation to compute ML and Bayesian support val-
ues. The only implementation of RELLs we are aware
of in this specific context is provided in Treefinder (Jobb
et al., 2004), but unfortunately neither implementation
details nor a respective performance study are available.
After more than a year of algorithmic and computational
experiments, we were not able to devise an RELL-based
solution that produces highly correlated support values
with standard BS on large datasets.

770 SYSTEMATIC BIOLOGY VOL. 57

More recently, Anisimova and Gascuel (2006) pro-
posed the approximate likelihood-ratio test (aLRT),
which provides a computationally efficient way to com-
pute support statistics. The inference of aLRT statistics is
based on the computation of n − 3 (where n is the num-
ber of sequences) nearest neighbor interchanges (NNIs)
on an NNI-optimal tree. The test must be applied to the
respective best-scoring ML tree. The standalone aLRT
test is less than an order of magnitude faster than RBS. It
requires, for instance, approximately 2 hours compared
to 16 hours with RBS on dataset d404 or 40 minutes com-
pared to 111 minutes on the single-gene d500 alignment.
However, the current implementation of aLRT, when ex-
ecuted in combination with an NNI search for the best-
scoring ML tree, requires almost 26 hours on d404 and is
thus slower than RBS. A comparison of aLRT with RBS
was omitted because it currently remains unclear how to
compare aLRT statistics with BS support values, in par-
ticular on real-world datasets where the true tree and the
true support values are unknown.

CONCLUSION

We have presented a novel rapid bootstrapping
method that yields support values that are highly cor-
related to standard BS values obtained by RAxML as
well as the qualitatively comparable GARLI program
(see Tables 4 and 5). The average improvement in ex-
ecution times over standard RAxML BS and competing
programs (GARLI, PHYML) exceeds one order of mag-
nitude and solves—to a large extent—the computational
problems associated with present–day full ML analyses
with a couple of hundred or a few thousand taxa. The
RBS algorithm allows systematists to conduct large ML
analyses in less than a week on their workstation. In addi-
tion, we offer the program as a Web service at the Vital-IT
unit of the Swiss Institute of Bioinformatics and on the
CIPRES project cluster at the San Diego Supercomputer
Center.

The significant speed improvement also opens up new
possibilities for improvements in current phylogenetic
methodology. For example, one can easily assess the im-
pact of different alignments obtained by distinct align-
ment programs on the final trees and associated support
values. This is particularly important, because the qual-
ity of the alignment can have a significant impact on
the inferred trees. Due to the high computational cost,
this important issue is rarely addressed in current real-
world studies. Moreover, one can design an iterative or
genetic alignment-refinement tree-building method that
uses trees and support values computed on an initial tree
as input for the next alignment refinement step. Another
useful application is the integration into pipelines that
automatically update backbone trees for large sequence
alignment databases, such as greengenes (DeSantis et al.,
2006), when sequences become available.

The RBS algorithm may also, due to its speed, con-
tribute to the development of a bootstopping criterion
that determines at which number of replicates one might
stop the BS process. The value of RBS is that it allows for

empirical assessment of such a bootstopping procedure,
because an extremely large number of 10,000 BS refer-
ence replicates can easily be computed for datasets up
to 2500 sequences. Finally, we will also focus on further
accelerating the ML search algorithm, which has now
become the main computational bottleneck, by using in-
formation from the preceding RBS search; e.g., one might
assign probabilities for conducting LSR moves based on
RBS support values or build a starting tree for the ML
search based on an appropriate RBS consensus tree.

ACKNOWLEDGMENTS

We would like to thank Tandy Warnow, who initiated this work by
requesting a quick and dirty BS algorithm, Peter Waddell for discus-
sions about RELL, and Jakob Fredslund for providing us the PHY.FI
code. Furthermore, we would like to thank Olaf Bininda-Emonds, Jun
Inoue, Nikos Poulakakis, Usman Roshan, Marc Gottschling, Chuck
Robertson, and Nicolas Salamin for providing real-world test datasets.
Sergios-Orestis Kolokotronis, Maria Anisimova, and Markus Göker
provided helpful comments on the manuscript. Finally, we would like
to thank Olivier Gascuel and an anonymous reviewer for useful com-
ments on the manuscript. This work was funded by the Emmy Noether
program of the German Science Foundation (AS), the NFS ITR program
“Building the Tree of Life” (EF 03-31648, PH), and financial support
from HP/Intel to Vital-IT (JR).

REFERENCES

Anisimova, M., and O. Gascuel. 2006. Approximate likelihood-ratio
test for branches: A fast, accurate, and powerful alternative. Syst.
Biol. 55:539–552.

Blagojevic, F., D. S. Nikolopoulos, A. Stamatakis, and C. D. Antonopou-
los. 2007. Dynamic multigrain parallelization on the cell broadband
engine. Pages 90–100 in Proceedings of the 12th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming.
San Diego, California.

Charalambous, M., P. Trancoso, and A. Stamatakis. 2005. Initial expe-
riences porting a bioinformatics application to a graphics processor.
LNCS 3746:415–425.

Chor, B., and T. Tuller. 2005. Maximum likelihood of evolutionary trees:
Hardness and approximation. Bioinformatics 21:97–106.

DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie,
K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006.
Greengenes, a chimera-checked 16S rRNA gene database and
workbench compatible with ARB. Appl. Env. Microbiol. 72:5069–
5072.

Dunn, C. W., A. Hejnol, D. Q. Matus, K. Pang, W. E. Browne, S. A.
Smith, E. Seaver, G. W. Rouse, M. Obst, G. D. Edgecombe, M. V.
Sorensen, S. H. D. Haddock, A. Schmidt-Rhaesa, A. Okusu, R. M.
Kristensen, W. C. Wheeler, M. Q. Martindale, and G. Giribet. 2008.
Broad phylogenomic sampling improves resolution of the animal
tree of life. Nature 452:745–749.

Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maxi-
mum likelihood approach. J. Mol. Evol. 17:368–376.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach
using the bootstrap. Evolution 39:783–791.

Fredslund, J. 2006. PHY.FI: Fast and easy online creation and manipu-
lation of phylogeny color figures. BMC Bioinformatics 7:315.

Goldman, N., J. P. Anderson, and A. G. Rodrigo. 2000. Likelihood-based
tests of topologies in phylogenetics. Syst. Biol. 49:652–670.

Grimm, G. W., S. S. Renner, A. Stamatakis, and V. Hemleben. 2006. A
nuclear ribosomal DNA phylogeny of acer inferred with maximum
likelihood, splits graphs, and motif analyses of 606 sequences. Evol.
Bioinformatics Online 2:279–294.

Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate algo-
rithm to estimate large phylogenies by maximum likelihood. Syst.
Biol. 52:696–704.

Guindon, S., F. Lethiec, P. Duroux, and O. Gascuel. 2005. PHYML
online—A Web server for fast maximum likelihood-based phylo-
genetic inference. Nucleic Acids Res. 33:557–559.

2008 REFERENCES 771

Hillis, D. M., T. A. Heath, and K. S. John. 2005. Analysis and visualiza-
tion of tree space. Syst. Biol. 54:471–482.

Hordijk, W., and O. Gascuel. 2005. Improving the efficiency of SPR
moves in phylogenetic tree search methods based on maximum like-
lihood. Bioinformatics 21:4338–4347.

Jobb, G., A. von Haeseler, and K. Strimmer. 2004. Treefinder: A pow-
erful graphical analysis environment for molecular phylogenetics.
BMC Evol. Biol. 4:18.

Keane, T. M., T. J. Naughton, and J. O. McInerney. 2007. MultiPhyl: A
high-throughput phylogenomics Webserver using distributed com-
puting. Nucleic Acids Res. 35:W33–W37.

Keane, T. M., T. J. Naughton, S. A. A. Travers, J. O. McInerney, and G. P.
McCormack. 2005. DPRml: Distributed phylogeny reconstruction
by maximum likelihood. Bioinformatics 21:969–974.

McMahon, M. M., and M. J. Sanderson. 2006. Phylogenetic supermatrix
analysis of Genbank sequences from 2228 papilionoid legumes. Syst.
Biol. 55:818–836.

Minh, B. Q., L. S. Vinh, A. von Haeseler, and H. A. Schmidt. 2005.
PIQPNNI: Parallel reconstruction of large maximum likelihood phy-
logenies. Bioinformatics 21:3794–3796.

Moret, B. M. E. 2002. Towards a discipline of experimental algorith-
mics. Pages 197–213 in Data structures, near neighbor searches, and
methodology: Fifth and Sixth DIMACS Implementation Challenges
(M. H. Goldwasser, D. Johnson, and C. McGeoch, eds.), volume 59
of DIMACS Monographs. American Mathematical Society. Provi-
dence, Rhode Island.

Morrison, D. A. 2007. Increasing the efficiency of searches for the max-
imum likelihood tree in a phylogenetic analysis of up to 150 nu-
cleotide sequences. Syst. Biol. 56:988–1010.

Ott, M., J. Zola, S. Aluru, and A. Stamatakis. 2007. Large-scale max-
imum likelihood-based phylogenetic analysis on the IBM blue-
Gene/L. In On-Line Proceedings of IEEE/ACM Supercomputing
Conference 2007. Reno, Nevada, USA.

Ripplinger, J., and J. Sullivan. 2008. Does choice in model selection
affect maximum likelihood analysis? Syst. Biol. 57:76–85.

Robinson, D. F., and L. R. Foulds. 1979. Comparison of weighted la-
belled trees. Lecture Notes Math. 748:119–126.

Robinson, D. F., and L. R. Foulds. 1981. Comparison of phylogenetic
trees. Math. Biosci. 53:131–147.

Ronquist, F., and J. Huelsenbeck. 2003. MrBayes 3: Bayesian phyloge-
netic inference under mixed models. Bioinformatics 19:1572–1574.

Schmidt, H. A., K. Strimmer, M. Vingron, and A. von Haeseler. 2002.
TREE-PUZZLE: Maximum likelihood phylogenetic analysis using
quartets and parallel computing. Bioinformatics 18:502–504.

Stamatakis, A. 2006a. Phylogenetic models of rate heterogeneity: A
high performance computing perspective. In Proceedings of 20th

IEEE/ACM International Parallel and Distributed Processing Sym-
posium (IPDPS2006). Rhodos, Greece.

Stamatakis, A. 2006b. RAxML-VI-HPC: Maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models.
Bioinformatics 22:2688–2690.

Stamatakis, A., F. Blagojevic, C. D. Antonopoulos, and D. S. Nikolopou-
los. 2007. Exploring new search algorithms and hardware for phylo-
genetics: RAxML meets the IBM cell. J. VLSI Sig. Proc. Sys. 48:271–
286.

Stamatakis, A., T. Ludwig, and H. Meier. 2005a. RAxML-III: A fast pro-
gram for maximum likelihood-based inference of large phylogenetic
trees. Bioinformatics 21:456–463.

Stamatakis, A., M. Ott, and T. Ludwig. 2005b. RAxML-OMP: An effi-
cient program for phylogenetic inference on SMPs. LNCS 3606:288–
302.

Strimmer, K. and A. von Haeseler. 1996. Quartet puzzling: A quar-
tet maximum likelihood method for reconstructing tree topologies.
Mol. Biol. Evol. 13:964–969.

Swofford, D. L. 2002. PAUP∗: Phylogenetic analysis using parsimony
(∗and other methods). Version 4.0b10. Sinauer Associates, Sunder-
land, Massachusetts.

Tarraga, J., I. Medina, L. Arbiza, J. Huerta-Cepas, T. Gabaldon,
J. Dopazo, and H. Dopazo. 2007. Phylemon: A suite of Web tools
for molecular evolution, phylogenetics and phylogenomics. Nucleic
Acids Res. 35:W38.

Vinh, L. S., H. A. Schmidt, and A. von Haeseler. 2005. PhyNav: A novel
approach to reconstruct large phylogenies. Pages 386–393 in Classi-
fication, the Ubiquitous Challenge. (Proceedings of the 28th Annual
Conference of the GfKl 2004). Studies in classification, data analysis,
and knowledge organization Springer, Heidelberg/New York.

Waddell, P. J., H. Kishino, and R. Ota. 2002. Very fast algorithms for
evaluating the stability of ML and Bayesian phylogenetic trees from
sequence data. Gen. Informatic 13:82–92.

Whelan, S. 2007. New approaches to phylogenetic tree search and
their application to large numbers of protein alignments. Syst. Biol.
56:727–740.

Wilkes, M. 2001. The memory gap and the future of high performance
memories. ACM SIGARCH Computer Architecture News 29:2–7.

Zwickl, D. 2006. Genetic algorithm approaches for the phylogenetic
analysis of large biological sequence datasets under the maximum
likelihood criterion. PhD thesis, University of Texas at Austin.

First submitted 23 December 2007; reviews returned 6 March 2008;
final acceptance 20 May 2008

Associate Editor: Susanne Renner

