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ABSTRACT 
Motivation: The maximum expected accuracy optimization criterion 
for multiple sequence alignment uses pairwise posterior probabilities 
of residues to align sequences. The partition function methodology 
is one way of estimating these probabilities. Here, we combine these 
two ideas for the first time to construct maximal expected accuracy 
sequence alignments. 
Results: We bridge the two techniques within the program 
Probalign. Our results indicate that Probalign alignments are gener-
ally more accurate than other leading multiple sequence alignment 
methods (i.e., Probcons, MAFFT, and MUSCLE) on the BAliBASE 
3.0 protein alignment benchmark. Similarly, Probalign also outper-
forms these methods on the HOMSTRAD and OXBENCH bench-
marks. Probalign ranks statistically significantly highest (P-value < 
0.005) on all three benchmarks. Deeper scrutiny of the technique 
indicates that the improvements are largest on datasets containing 
N/C terminal extensions and on datasets containing long and het-
erogeneous length proteins. These points are demonstrated on both 
real and simulated data. Finally, our method also produces accurate 
alignments on long and heterogeneous length datasets containing 
protein repeats. There, alignment accuracy scores are at least 10% 
and 15% higher than the other three methods when standard devia-
tion of length is at least 300 and 400 respectively. 
Availability: Open source code implementing Probalign as well as 
for producing the simulated data, and all real and simulated data are 
freely available from http://www.cs.njit.edu/usman/probalign 
Contact: usman@cs.njit.edu  

1 INTRODUCTION  
Protein sequence alignment is likely the most commonly used task 
in bioinformatics (Notredame et al., 2002). Applications include 
detecting functional regions in proteins (La et al., 2005) and recon-
structing complex evolutionary histories (Notredame et al., 2002; 
Durbin et al., 1998). Techniques for constructing accurate align-
ments are therefore of great interest to the bioinformatics commu-
nity. The bioinformatic literature is filled with many alignment 
tools, e.g., ClustalW (Thompson et al., 1994), Dialign (Subrama-
nian et al., 2005), T-Coffee (Notredame et al., 2000), Probcons 
(Do et al., 2005), MUSCLE (Edgar, 2004), and MAFFT (Katoh et 
al., 2005). In terms of accuracy, recent comparative studies (Do et 
al., 2005; Katoh et al., 2005; Edgar 2004) place MAFFT and Prob-
cons among the very top performing sequence alignment methods.  

  
*To whom correspondence should be addressed.  

Given the importance of multiple sequence alignment, sev-
eral protein alignment benchmarks have been created for unbiased 
accuracy assessment of alignment quality. Of these, BAliBASE 
(Thompson et al., 1999; Bahr et al., 2001; Thompson et al., 2005) 
is by far the most commonly used. The BAliBASE benchmark 
alignments are computed using superimposition of protein struc-
tures. To date Probcons v1.1 and MAFFT v5.851 are the most 
accurate on BAliBASE, whereas MUSCLE is among the fastest on 
these benchmarks (see Do et al., 2005; Edgar 2004; and Katoh et 
al., 2005 for recent studies).  

MUSCLE is a sum-of-pairs optimizer, which uses the log ex-
pectation score for aligning profiles of sequences. It is among the 
fastest alignment programs in the literature. Additionally, the accu-
racy of the MUSCLE alignments is generally quite good. MAFFT 
is based upon Fast Fourier Transforms; though, the latest version, 
combines different optimization criteria that evaluate consistency 
between multiple and pairwise alignments. Probcons computes the 
maximal expected accuracy alignment instead of the usual maxi-
mum sum-of-pairs or the Viterbi alignment (Durbin et al., 1998). 
The expected accuracy of an alignment is based upon posterior 
probabilities of residues (Durbin et al., 1998; Miyazawa 1995). 
Probcons computes these probabilities using a Hidden Markov 
Model (HMM) for pairwise sequence alignment. The HMM pa-
rameters are learned using unsupervised learning on the BAli-
BASE 2.0 benchmark.  

In this investigation, we bridge two important bioinformatic 
techniques (for the first time) in an effort to produce more accurate 
multiple sequence alignments. The first approach estimates amino 
acid posterior probabilities from the partition function of align-
ments (as described by Miyazawa 1995). The second computes the 
maximal expected accuracy alignment (as described originally by 
Durbin et al., 1998) after applying the probability consistency 
transformation of Probcons (Do et al., 2005). The new method, 
which we call Probalign, generally produces statistically signifi-
cantly better alignments than the state-of-the-art on the BAliBASE 
3.0, HOMSTRAD, and OXBENCH benchmarks. The improve-
ments are largest when datasets of variable and long length se-
quences are considered.  

2 METHODS 
Posterior probabilities and maximal expected accuracy alignment 
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Most alignment programs compute an optimal sum-of-pairs alignment or a 
maximum probability alignment using the Viterbi algorithm (Durbin et al., 
1998). An alternative approach is to search for the maximum expected 
accuracy alignment (Durbin et al., 1998; Do et al., 2005). The expected 
accuracy of an alignment is based upon the posterior probabilities of align-
ing residues in two sequences.  

Consider sequences x and y and let a* be their true alignment. Fol-
lowing the description in (Do et al., 2005) the posterior probability of resi-
due xi aligned to yj in a* is defined as 

 
P xi y j a x y P a x y

a A
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where A is the set of all alignments of x and y and 1(expr) is the indicator 
function which returns 1 if the expression expr evaluates to true and 0 
otherwise. P(a|x,y) represents the probability (our belief) that alignment a 
is the true alignment a*. This can easily be calculated using a pairwise 
HMM if all the parameters are known (see Do et. al., 2005). From hereon 
we represent the posterior probability as P(xi ~ yj) with the understanding 
that it represents the probability of xi aligned to yj in the true alignment a*. 
Given the posterior probability matrix P(xi ~ yj), we can compute the 
maximal expected accuracy alignment using the following recursion de-
scribed in Durbin et al., 1998. 
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Probcons estimates posterior probabilities for amino acid residues us-

ing pair HMMs and unsupervised learning of model parameters. It then 
proceeds to construct a maximal expected accuracy alignment by aligning 
pairs of sequence profiles along a guide-tree followed by iterative refine-
ment. In this investigation, we examine a different technique of estimating 
posterior probabilities; we use suboptimal alignments generated using the 
partition function of alignments.  

According to equation (1) as long as we have an ensemble of align-
ments A with their probabilities P(a|,x,y) we can compute the posterior 
probability P(xi ~ yj) by summing up the probabilities of alignments where 
xi is paired with yj . One way to generate an ensemble of such alignments is 
to use the partition function methodology, which we now describe. 
 
Posterior probabilities by partition function 
 
Amino acid scoring matrices, normally used for sequence alignment, are 
represented as log-odds scoring matrices (as defined by Dayhoff et al., 
1978). The commonly used sum-of-pairs score of an alignment a (Durbin 
et. al., 1998) is defined as the sum of residue-residue pairs and residue-gap 
pairs under an affine penalty scheme.  
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Here T is a constant (depending upon the scoring matrix), Mij is the muta-
tion probability of residue i changing to j and fi and fj are background fre-
quencies of residues i and j. In fact, it can be shown that any scoring matrix 
corresponds to a log odds matrix (Karlin and Alstchul 1990; Altschul 
1993).  

Miyazawa 1995 proposed that the probability of alignment a, P(a), of 
sequences x and y can be defined as 
 
P a eS a T( ) ( )/∝              (4) 

 
where S(a) is the score of the alignment under the given scoring matrix. In 
this setting one can then treat the alignment score as negative energy and T 
as the thermodynamic temperature, similar to what is done in statistical 
mechanics. Analogous to the statistical mechanical framework, Miyazawa 
1995 defined the partition function of alignments as 
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where A is the set of all alignments of x and y. With the partition function 
in hand, the probability of an alignment a can now be defined as 
 
P a T e Z TS a T( , ) / ( )( )/=            (6) 

 
As T approaches infinity all alignments are equally probable, whereas at 
small values of T, only the nearly optimal alignments have the highest 
probabilities. Thus, the temperature parameter T can be interpreted as a 
measure of deviation from the optimal alignment.  

The alignment partition function can be computed using recursions 
similar to the Needleman-Wunsch dynamic algorithm. Let ZM

ij represent 
the partition function of all alignments of x1..i and y1..j ending in xi paired 
with yj, and Sij(a) represent the score of alignment a of x1..i and y1..j. Accord-
ing to equation (5)  
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where Aij is the set of all alignments of x1..i and y1..j, and s(xi,yj) is the score 
of aligning residue xi with yj. The summation in the bracket on the right 
hand side of equation (7) is precisely the partition function of all align-
ments of x1..i-1 and y1..j-1. We can thus compute the partition function matri-
ces using standard dynamic programming. 
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Here s(x,y) represents the score of aligning residue xi with yj, g is the 

gap open penalty, and ext is the gap extension penalty. The matrix ZM
ij 

represents the partition function of all alignments ending in xi paired with 
yj. Similarly ZE

ij represents the partition function of all alignments in which 
yj is aligned to a gap and ZF

ij all alignments in which xi is aligned to a gap. 
Boundary conditions and further details can be obtained from Miyazawa 
1995.  

Once the partition function is constructed, the posterior probability of 
xi aligned to yj can be computed as 
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where Z’M

i,j is the partition function of alignments of subsequences xi..m and 
yj..n beginning with xi paired with yj  and m and n are lengths of x and y 
respectively. This can be computed using standard backward recursion 
formulas as described in Durbin et al., 1998.  

In equation (9) ZM
i-1,j-1/Z and Z’M

i+1,j+1/Z represent the probabilities of 
all feasible suboptimal alignments (determined by the T parameter) of x1..i-1 
and y1..j-1, and xi+1.m and yj+1..n respectively, where m and n are lengths of x 
and y respectively. Thus, equation (9) weighs alignments according to their 
partition function probabilities and estimates P(xi ~ yj ) as the sum of prob-
abilities of all alignments where xi is paired with yj.    
 
Probalign: Maximal expected accuracy alignment using partition func-
tion posterior probabilities 
 
Recall the maximum expected accuracy alignment formulation described 
earlier. In order to compute such an alignment we need an estimate of the 
posterior probabilities. In this report, we utilize the partition function poste-
rior probability estimates for constructing multiple alignments. For each 
sequence x, y in the input, we compute the posterior probability matrix P(xi 
~ yj) using equation (9). These probabilities are subsequently used to com-
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pute a maximal expected multiple sequence alignment using the Probcons 
methodology. First, the probabilistic consistency transformation (described 
in detail in Do et al., 2005) is applied to improve the estimate of the prob-
abilities. Briefly, the probabilistic consistency transformation is to re-
estimate the posterior probabilities based upon three-sequence alignments 
instead of pairwise. Note that this does not mean alignments are recom-
puted; our estimation (as done in Probcons) is still fundamentally based 
upon pairwise alignments. It is possible to compute a partition function of 
three-sequence alignments, and subsequently estimate posterior probabili-
ties directly from them. However, in this proof of concept study, we exam-
ine performance on pairwise alignments only. 

After the probabilistic consistency transformation, sequence profiles 
are next aligned in a post-order walk along a UPGMA guide-tree. As is 
commonly done, UPGMA guide trees are computed using pairwise ex-
pected accuracy alignment scores. Finally, iterative refinement is per-
formed to improve the alignment. This standard alignment procedure is 
described in more detail in Do et al., 2005 and is implemented in the Prob-
cons package (by the same authors). 

We implement the Probalign approach by modifying the underlying 
Probcons program to read in arbitrary posterior probabilities for each pair 
of sequences in the input. All use of HMMs in the modified Probcons code 
is disabled. We modified the probA program of Muckstein et al., 2002 for 
computing partition function posterior probability estimates. The Probalign 
program is represented algorithmically in Figure 1. Our current implemen-
tation is a beta version and mainly for proof of concept; however, the open 
source code is fully functional and is available with full support from 
http://www.cs.njit.edu/usman/probalign. 

 
 
 
 

 

 

 

Fig. 1. Probalign algorithmic description. 

Experimental design 
 
Alignment benchmarks. To test the accuracy of our method, we use three 
popular multiple protein sequence alignment benchmarks in the literature: 
BAliBASE, HOMSTRAD, and OXBENCH. BAliBASE (Thompson et al., 
2005) is the most widely used benchmark for assessing protein multiple 
sequence alignments. Each alignment is well curated and contains core 
regions that represent reliable structurally alignable portions of the align-
ment. These alignable regions are used for evaluating accuracy and the 
remainder is ignored. BAliBASE 3.0 contains 5 sets of multiple protein 
alignments, each with different characteristics. RV11 contains 38 equidis-
tant families with sequence identity less than 20%, while RV12 contains 44 
equidistant families with sequence identity between 20% and 40%. Both of 
these lack sequences with large internal insertions (> 35 residues). RV20 
contains 41 families with > 40% similarity and an orphan sequence which 
shares less than 20% similarity with the rest of the family. RV30 contains 
30 families which contain sub-families with > 40% similarity but < 20% 
similarity across the sub-families. RV40 contains sequences with large N/C 
terminal extensions and is the largest set with 49 alignments, while RV50 
contains sequences with large internal insertions and is the smallest with 16 
alignments. Both RV40 and RV50 contain sequences that share > 20% 
similarity with at least one other sequence in the set. Overall, there are 217 
benchmark alignments within BAliBASE 3.0. 

HOMSTRAD (Mizuguchi et. al., 1998) is a curated database of struc-
ture-based alignments for homologous protein families. We use the April 
2006 release for this study which contains 1033 families. HOMSTRAD 

contains all known protein structure clustered into homologous families 
and aligned on the basis of their 3-D structures.  

OXBENCH (Raghava et. al., 2003) is a set of structure-based align-
ments based on protein domains. It contains three sets of unaligned se-
quences: master, which are the unaligned protein domains in the true 
alignments; full, which contains full length unaligned proteins; and ex-
tended which contains additional proteins similar to the ones in unaligned 
master set. There are a total of 672 true master and extended alignments 
and 605 full sequence ones. Due to running time considerations, we ex-
clude all datasets above 100 sequences. 
 
Determining prediction accuracy. Given a true and estimated multiple 
sequence alignment, the accuracy of the estimated alignment is usually 
computed using two measures: the sum-of-pairs (SP) and the true column 
(TC) scores (Thompson et al., 1999). SP is a measure of the number of 
correctly aligned residue pairs divided by the number of aligned residue 
pairs in the true alignment. TC is the number of correctly aligned columns 
divided by the number of columns in the true alignment. Both are standard 
measures of computing alignment accuracy. 
 
Statistical significance. Statistically significant performance differences 
between the various alignment methods are calculated using the Friedman 
rank test (Kanji 1999), which is a standard measure used for discriminating 
alignments in benchmarking studies (Thompson et. al., 1999; Do et al., 
2005; Edgar 2004; Katoh et al., 2005). Roughly speaking, the lower the 
reported P-value the less likely it is that the difference in ranking between 
the methods is due to chance. We consider P-values below 0.05 (a standard 
cutoff in statistics) to be statistically significant. 

 
Probalign algorithm: 

1. For each pair of sequences (x,y) in the input set 
a. Compute partition function matrices Z(T) 
b. Estimate posterior probability matrix P(xi ~ yj) 

for (x,y) using equation (9)  
2. Perform the probabilistic consistency transformation and 

compute a maximal expected accuracy multiple alignment: 
align sequence profiles along a guide-tree and follow by it-
erative refinement (Do et. al.). 

Programs compared and parameter settings. We compare Probalign to 
Probcons v1.1, MAFFT v5.851, and MUSCLE v3.6. These versions are the 
most current at the time of writing of this paper. We use the L-INS-i strat-
egy of MAFFT, which is the most accurate according to latest benchmark 
tests by the MAFFT authors. The programs are compared using the scoring 
matrices and gap penalties recommended for their respective algorithms.  

Probalign has two sets of parameters, one for the component that 
computes the posterior probabilities and the other for computing the maxi-
mal expected accuracy alignment. For the first component we use the Gon-
net 160 scoring matrix (Gonnet et. al., 1992) with gap open and gap exten-
sion penalties set to -22 and -1 respectively. The default value of T (ther-
modynamic temperature) was set to 5 after comparing values 1 through 9 
on BAliBASE RV11 (see Table 1). For the second component, we use the 
exact same default parameters as that of Probcons, i.e. two rounds of prob-
abilistic consistency and at most 100 rounds of iterative refinement. 

3 RESULTS 

3.1 Effect of thermodynamic temperature  
We first look at the effect of different values of the thermodynamic 
temperature T on Probalign. Table 1 shows that T=5 is optimal on 
RV11. These settings of T appear to work well for the Gonnet 160 
matrix and its affine gap penalties; therefore, we set T=5 for the 
remainder of our experiments.  

Table 1. Effect of different thermodynamic temperatures on Probalign on 
RV11 subset of BAliBASE 3.0. 

T Mean SP / TC T Mean SP / TC T Mean SP / TC 
1 51.43 / 24.89 4 65.23 / 43.03 7 60.28 / 36.58 
2 55.06 / 29.08 5 69.32 / 45.26 8 49.51 / 25.76 
3 57.90 / 32.39 6 66.18 / 40.87 9 41.12 / 18.84 

 

3.2 Benchmark comparisons 
In Table 2 we compare mean SP scores and TC of Probalign to 
other methods on BAliBASE 3.0. Probalign averages are the high-
est on the RV11, RV12, and RV40 subsets, as well as the full 
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BAliBASE dataset. MAFFT does better on the remaining three 
datasets. Although the differences are small, Probalign ranks statis-
tically significantly higher than all three methods on RV12, RV40, 
and the full BAliBASE dataset (see Table 3). No method ranked 
statistically significantly higher than Probalign on any of the 
BAliBASE subsets. 

Table 2. Mean SP / TC scores on BAliBASE 3.0. 

Data Probalign MAFFT Probcons MUSCLE 
RV11 69.3 / 45.3 67.1 / 44.6 67.0 / 41.7 59.3 / 35.9 
RV12 94.6 / 86.2 93.6 / 83.8 94.1 / 85.5 91.7 / 80.4 
RV20 92.6 / 43.9 92.7 / 45.3 91.7 / 40.6 89.2 / 35.1 
RV30 85.2 / 56.4 85.6 / 56.9 84.5 / 54.4 80.3 / 38.3 
RV40 92.2 / 60.3 92.0 / 59.7 90.3 / 53.2 86.7 / 47.1 
RV50 89.3 / 55.2 90.0 / 56.2 89.4 / 57.3 85.7 / 48.7 
All 87.6 / 58.9 87.1 / 58.6 86.4 / 55.8 82.5 / 48.5 

Table 3. P-values of Friedman rank test on BAliBASE TC scores. In all 
cases of statistical significance (< 0.05) Probalign is ranked higher. NS 
indicates non statistically significant. 

Method RV11 RV12 RV20 RV30 RV40 RV50 All 
MAFFT NS < 0.005 NS NS < 0.005 NS < 0.005
Probcons 0.049 0.0233 NS NS < 0.005 NS < 0.005
MUSCLE < 0.005 < 0.005 0.008 < 0.005 < 0.005 NS < 0.005

 
We also test Probcons by retraining (on BAliBASE 3.0) with 

single and pair emission probabilities set to the background and 
mutation matrix probabilities of Gonnet 160. In this way we can 
test if the Probalign improvements are purely a result of scoring 
matrix differences. The performance of Probcons performance 
does not improve. In fact, it actually does worse than with training 
on the (default) Blosum 62 matrix. 

Table 4 compares the CPU running time of Probalign to the 
other methods on RV11 and RV12 subsets of BAliBASE. While 
Probalign is the slowest, its running time is still tractable. Our 
current beta implementation is a pipeline of C++ programs and 
Perl scripts linked by system calls. An integrated version (which is 
in progress) will yield a much faster implementation.  

Table 4. Mean CPU time (in seconds) on RV11 and RV12 subsets of 
BAliBASE 3.0. 

Data Probalign MAFFT Probcons MUSCLE 
RV11 6.64 0.98 3.65 0.71 
RV12 17.73 1.28 10.46 0.74 

Finally, Table 5 compares mean SP and TC scores on the 
HOMSTRAD and OXBENCH benchmarks. Probalign mean SP 
and TC scores rank highest on HOMSTRAD, OXBENCH, and 
OXBENCH-full with P-value < 0.005. Moreover, on the 
OXBENCH-extended dataset, no method ranked statistically sig-
nificantly higher than Probalign. In fact, Probalign ranks higher 
than Probcons on OXBENCH-extended with P-value 0.014. 

Table 5. Mean SP / TC scores on HOMSTRAD and OXBENCH. 

Data Probalign MAFFT Probcons MUSCLE 
HOMSTRAD 82.2 / 77.9 80.4 / 75.9 81.9 / 77.4 80.8 / 76.3
OXBENCH 89.8 / 85.1 88.4 / 83.2 89.3 / 84.2 89.4 / 84.4

OXBENCH (full) 84.0 / 77.0 82.8 / 75.3 83.2 / 75.7 82.6 / 74.8
OXBENCH (extend) 92.0 / 89.6 92.5 / 90.0 92.4 / 89.8 91.8 / 89.0

 

3.3 Simulation of N/C terminal extensions 
Probalign’s performance improvement is most significant over all 
methods on the RV40 subset of BAliBASE. Recall that this dataset 
contains sequences with long N/C terminal extensions. We rely on 
simulation to further test Probalign’s improvement on this type of 
data. We begin by computing the maximum parsimony model trees 
(with edge lengths) on arbitrary selected alignments from the 
RV11 subset of BAliBASE 3.0. We select the BB11003, 
BB11004, BB11008, BB11009, and BB11010 alignments, all of 
which contain four sequences and branch length ranging from 
conservative to divergent. For each tree, we generate a root protein 
sequence with the same background probability distribution as 
Dayhoff’s. We define core regions of this sequence as randomly 
selected contiguous region (with probability 0.25) ranging from 
length 1 to 30 (with uniform probability). We then evolve se-
quences using the ROSE model (Stoye et. al., 1998). However, in 
the defined core regions, the mutation probability is reduced (by 
half) and no insertion deletions are allowed.  

Briefly, ROSE interprets each branch length as PAM units of 
evolution. On a branch of length k, the probability of substitution is 
given by Mk where M is the PAM1 mutation probabilities. For 
insertion (or deletion) it randomly picks an amino acid with prob-
ability insert_threshold * branch_length * sequence_length and 
inserts (or deletes) a sequence of length given by an exponential 
distribution. Once the simulated sequences are generated, we at-
tach a randomly generated sequence to each end of each sequence 
with probability 0.25, which constitute our artificial N/C exten-
sions.  

For each model tree, we produce a root sequence of length 
100, and the (insertion, deletion) thresholds are set to (0.0005, 
0.000125), meaning the deletion threshold is 1/4th the insertion.  
We generate 100 sequence sets for each model tree, and align us-
ing Probalign, MAFFT, and Probcons. The alignments are com-
pared against the core regions of the true alignment (known by 
simulation). Table 6 shows that Probalign wins for all model trees. 
Probalign SP and TC scores also rank higher than all methods with 
P-value < 0.05 (except for BB11009 where all methods do equally 
well). We also examined performance on simulated data contain-
ing long internal insertions, along with the N/C extensions, and 
saw similar results (data not shown). 

Table 6. Mean SP / TC scores on different model trees. Also shown are 
average branch lengths (PAM units of evolution) for each model tree.  

Model tree Probalign MAFFT Probcons 
BB11003 (164) 77.1 / 63.7 72.7 / 58.2 72.4 / 56.9 
BB11004 (132) 89.5 / 83.0 86.7 / 78.3 86.8 / 78.5 
BB11008 (92) 97.9 / 95.9 96.8 / 93.9 96.5 / 93.3 
BB11009 (33) 99.8 / 99.7 99.8 / 99.7 99.8 / 99.6 
BB11010 (184) 63.4 / 46.9 58.1 / 41.0 60.1 / 414 

 

3.4 Datasets with long and variable length sequences 
Not only does the RV40 subset contain sequences with large N/C 
extension, but they are also highly variable in length. In fact, many 
constituent proteins are at least 1000 residues in length. Based on 
our results thus far, we conjecture that Probalign does best when 
presented such datasets. To test this hypothesis, we select all un-
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aligned datasets in BAliBASE 3.0 where the standard deviation in 
sequence length is at least 100 or 200 and the maximum length is 
at least 500 or 1000. For these four possible permutations, we 
compare the mean SP and TC scores of Probalign to the other 
methods (Table 7). 

Table 7. Mean SP / TC scores on BAliBASE 3.0 datasets with standard 
deviation of length at least 100 and 200 and maximum sequence length at 
least 500 and 1000.  

Max length / 
Standard dev. 

Probalign MAFFT Probcons MUSCLE 

500 / 100 88.4 / 56.6 88.0 / 58.0 86.7 / 51.6 81.5 / 42.5 
500 / 200 88.5 / 54.6 87.0 / 51.9 87.2 / 48.9 81.9 / 42.4 
1000 / 100 91.4 / 58.1 90.4 / 55.7 89.7 / 51.6 84.3 / 44.1 
1000 / 200 90.7 / 55.0 89.3 / 51.4 89.2 / 48.7 83.2 / 42.5 

 
Table 7 shows that the improvement of Probalign over other 

methods increases as both the standard deviation of the mean 
length and the maximum sequence length increases. The Probalign 
mean column score (TC) is 2.8%, 2.4%, and 3.7% better than 
MAFFT at the 500/200, 1000/100, and 1000/200 settings, respec-
tively, and at least 5% better than Probcons on all four combina-
tions. Furthermore, even though the mean TC is lower than that of 
MAFFT in row one, Probalign ranked higher than all methods on 
each of the four settings with P-value < 0.005 (for both TC and SP 
scores). 

Table 8 shows mean SP and TC scores broken down for each 
BAliBASE subset but containing only those datasets with maxi-
mum sequence length at least 1000 and standard deviation of 
length at least 100 and 200. We omit MUSCLE from this compari-
son since it is poorest on these types of datasets. At the 1000/100 
setting, Probalign mean TC score is at least 2.8%, 3%, and 4% 
better than MAFFT and Probcons on RV12, RV30, and RV40 
subsets, respectively. At the 1000/200 setting, TC improvement on 
both RV30 and RV40 increases to at least 5%. However, only on 
RV40 is Probalign statistically significantly ranked highest for 
both SP and TC score (with P-value < 0.005). No method ranked 
statistically significantly higher than Probalign. 

Table 8. Mean SP / TC scores for datasets with max sequence length at 
least 1000 and standard deviation of length at least 100 and 200 for each 
BAliBASE subset. The number of datasets in each BAliBASE subset 
(RV11 through RV50) satisfying these criteria is indicated in parentheses.  

Max length / Standard dev. Probalign MAFFT Probcons 
RV11 1000 / 100 (1) 
           1000 / 200 (1) 

62.5 / 39.0 
62.5 / 39.0 

55.2 / 36.0 
55.2 / 36.0 

62.8 / 38.0 
62.8 / 38.0 

RV12 1000 / 100 (5) 
           1000 / 200 (5) 

93.6 / 81.6 
93.6 / 81.6 

91.5 / 77.0 
91.5 / 77.0 

92.3 / 78.8 
92.3 / 78.8 

RV20 1000 / 100 (6) 
           1000 / 200 (5) 

92.3 / 42.0 
91.6 / 34.6 

91.7 / 41.0 
90.9 / 34.0 

91.0 / 38.5 
90.1 / 30.4 

RV30 1000 / 100 (3) 
           1000 / 200 (1) 

90.8 / 67.3 
77.2 / 40.0 

90.6 / 64.3 
76.1 / 34.0 

89.4 / 63.3 
73.6 / 35.0 

RV40 1000 / 100 (25) 
           1000 / 200 (20) 

92.7 / 59.3 
93.0 / 57.3 

91.0 / 54.8 
90.8 / 52.1 

89.9 / 48.2 
90.6 / 47.6 

RV50 1000 / 100 (6) 
           1000 / 200 (4) 

88.1 / 48.5 
85.0 / 43.5 

91.2 / 55.8 
89.1 / 45.8 

89.7 / 52.2 
87.3 / 45.8 

 
On RV50, MAFFT is the winner on both the full dataset (see 

Table 2) and on the subsets in Table 8, but not statistically signifi-
cantly ranked higher. By reducing the gap extension penalty (to 

allow for large internal insertions), Probalign’s TC score improves 
considerably (but not statistically significantly) as shown in Table 
9 below. The TC score with 0.2 gap extension penalty is 3.2% 
better than Probcons and MAFFT at the 1000/200 setting. 

Table 9. Mean SP / TC scores for the full RV50 BAliBASE dataset (long 
internal insertions) in row two and for RV50 datasets with long and hetero-
geneous length sequences (last two rows). The number of datasets meeting 
these criteria is indicated in parentheses.  

RV50 Dataset Probalign 
(gap ext  0.2)

Probalign 
(gap ext 1.0) 

MAFFT Probcons 

Complete 87.8 / 56.4 89.3 / 55.2 90.0 / 56.2 89.4 / 57.3
Max len / Std dev

1000/100 (6) 
1000/200 (4) 

 
88.2 / 56.0 
85.9 / 49.0 

 
88.1 / 48.5 
85.0 / 43.5 

 
91.2 / 55.8
89.1 / 45.8

 
89.7 / 52.2
87.3 / 45.8

 
We perform one more test here to examine performance on 

heterogeneous length sequences. We consider reference set 6 of 
BAliBASE 2.0 (Thompson et al., 2001) containing repeats. Re-
peats are much smaller than the original sequence and most of the 
repeat datasets containing highly variable length sequences. Refer-
ence 6 of BAliBASE contains 13 reference alignments of repeats 
and several more repeat datasets classified into six different sub-
sets. We refer the reader to Thompson et al., 2001 for complete 
classification details. We gather all datasets in reference 6 (for a 
total of 77) and considered only those with maximum sequence 
length at least 500 and 1000, and standard deviation of length at 
least 100, 200, 300, and 400. Again, we omit MUSCLE because it 
performs worse than the three other methods on this type of data. 

Table 10. Mean SP / TC scores on BAliBASE 2.0 reference 6 (repeat) 
datasets with std. deviation of length at least 100, 200, 300, and 400, and 
maximum sequence length at least 500 and 1000. Indicated in parentheses 
are the number of datasets meeting these conditions. 

Max length / 
Standard dev. 

Probalign MAFFT Probcons 

500 / 100 (40) 89.1 / 44.9 87.3 / 49.0 87.4 / 38.6 
500 / 200 (21) 88.3 / 43.8 85.0 / 46.4 86.7 / 40.0 
500 / 300 (9) 95.3 / 61.0 82.6 / 51.3 87.3 / 46.6 
500 / 400 (5) 94.6 / 55.0 72.0 / 38.2 79.8 / 38.0 

1000 / 100 (15) 90.2 / 43.3 82.4 / 36.9 85.4 / 27.6 
1000 / 200 (12) 89.2 / 38.2 79.7 / 32.4 83.6 / 27.7 
1000 / 300 (7) 94.5 / 52.8 78.3 / 42.4 83.9 / 34.6 
1000 / 400 (5) 94.6 / 55.0 72.0 / 38.2 79.8 / 38.0 

 
The Probalign improvements on these datasets are the largest 

observed so far (see Table 10 above). As the maximum sequence 
length and the standard deviation in length increases so does the 
Probalign improvement. When standard deviation of length is at 
least 300 and 400, Probalign SP and TC score is at least 10% and 
15% better than the next best method. While no method is ranked 
statistically significantly better than any other on these datasets, 
these large Probalign improvements gained warrant significant 
merit. 

4 DISCUSSION 
Probalign’s improved performance arises from consideration of 
suboptimal alignments. Let us look at equation (9) where the pos-
terior probabilities are estimated. Here, ZM

i-1,j-1/Z and Z’M
i+1,j+1/Z 

represent the probabilities of all alignments of x1..i-1 and y1..j-1, and 
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xi+1.m and yj+1..n where m and n are lengths of x and y respectively. 
Strictly speaking, we are not looking at all alignments of x1..i-1 and 
y1..j-1 but only a subset of suboptimal alignments determined by the 
T parameter, which is analogous to the thermodynamic tempera-
ture. These suboptimal alignments may in fact be more biologi-
cally accurate, while not necessarily the most optimal under the 
employed scoring scheme. This result was reported previously 
(Muckstein et al., 1998) when examining several thousand subop-
timal pairwise alignments (generated using the partition function) 
for a particular pair of proteins. Many of the suboptimal align-
ments were deemed to be more biologically relevant than the opti-
mal. This result is the underlying motivation for our combined 
Probalign approach. 

Further insight into Probalign is gained by generating an en-
semble of high probability suboptimal pairwise alignments using 
stochastic backtracking of the partition function matrix (as de-
scribed in Muckstein et al., 2002), and then estimating P(xi ~ yj) as 
the fraction of alignments where xi is paired with yj. This method 
produces almost exactly the same results as when using equation 
(9). In light of this result, it is now perhaps easier to see why 
Probalign is particularly better than other methods at aligning het-
erogeneous datasets, which are long in length. In such datasets, 
regions that are highly similar will be preserved in most subopti-
mal alignments, even though they may not be perfectly aligned in 
the optimal one (which, as we have seen in our experiments, is 
usually the case).  

The results in this study allow us to directly compare posterior 
probability estimates using the Probcons and Probalign techniques. 
Both follow the exact same strategy once the probabilities are 
specified. Probalign has the advantage over Probcons of not having 
to learn model parameters from training data. This important dis-
tinction makes Probalign applicable to situations where a diverse 
range of training data is not readily available (i.e., motif searching, 
repeat alignments, widely variable lengths, RNA and DNA se-
quences). On the other hand, the learning algorithm of Probcons 
can learn optimal gap parameters directly and not have to resort to 
hand-tuned ones the way that Probalign requires. 

By generating a high probability alignment ensemble (for a 
given pair of sequences) it is possible to assign weights to different 
alignments based upon biological features. For example, future 
work could assign weights based on features such as number of 
gapless long hydrophobic regions or number of hydrophilic resi-
dues around gaps (similar to what is done in Do et al., 2006). Al-
ternative approaches for generating alignment ensembles remain to 
be explored. The applicability of Probalign for constructing accu-
rate RNA alignments and also those that produce accurate phy-
logenetic trees also remains to be seen. Probalign’s performance on 
long and heterogeneous length datasets suggests it may be useful in 
aligning and detecting motifs in long DNA genomic regions. Fi-
nally, other alignment programs based upon the Probcons frame-
work may also perform better with the partition function posterior 
probabilities (Paten 2005; Schwartz et al., 2006). 
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