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ABSTRACT

A multiple sequence alignment program, MAFFT,
has been developed. The CPU time is drastically
reduced as compared with existing methods.
MAFFT includes two novel techniques. (i) Homo-
logous regions are rapidly identi®ed by the fast
Fourier transform (FFT), in which an amino acid
sequence is converted to a sequence composed of
volume and polarity values of each amino acid resi-
due. (ii) We propose a simpli®ed scoring system
that performs well for reducing CPU time and
increasing the accuracy of alignments even for
sequences having large insertions or extensions as
well as distantly related sequences of similar length.
Two different heuristics, the progressive method
(FFT-NS-2) and the iterative re®nement method
(FFT-NS-i), are implemented in MAFFT. The perform-
ances of FFT-NS-2 and FFT-NS-i were compared
with other methods by computer simulations and
benchmark tests; the CPU time of FFT-NS-2 is dras-
tically reduced as compared with CLUSTALW with
comparable accuracy. FFT-NS-i is over 100 times
faster than T-COFFEE, when the number of input
sequences exceeds 60, without sacri®cing the
accuracy.

INTRODUCTION

Multiple sequence alignment is a basic tool in various aspects
of molecular biological analyses ranging from detecting key
functional residues to inferring the evolutionary history of a
protein family. It is, however, dif®cult to align distantly
related sequences correctly without manual inspections by
expert knowledge. Many efforts have been made on the
problems concerning the optimization of sequence alignment.
Needleman and Wunsch (1) presented an algorithm for
sequence comparison based on dynamic programming (DP),
by which the optimal alignment between two sequences is
obtained. The generalization of this algorithm to multiple
sequence alignment (2) is not applicable to a practical
alignment that consists of dozens or hundreds of sequences,
since it requires huge CPU time proportional to NK, where K is
the number of sequences each with length N. To overcome this

dif®culty, various heuristic methods, including progressive
methods (3) and iterative re®nement methods (4±6), have been
proposed to date. They are mostly based on various combin-
ations of successive two-dimensional DP, which takes CPU
time proportional to N2.

Even if these heuristic methods successfully provide the
optimal alignments, there remains the problem of whether the
optimal alignment really corresponds to the biologically
correct one. The accuracy of resulting alignments is greatly
affected by the scoring system. Thompson et al. (7) developed
a complicated scoring system in their program CLUSTALW,
in which gap penalties and other parameters are carefully
adjusted according to the features of input sequences, such as
sequence divergence, length, local hydropathy and so on.
Nevertheless, no existing scoring system is able to process
correctly global alignments for various types of problems
including large terminal extension of internal insertion (8).
Considerable improvements in the accuracy have recently
been made in CLUSTALW (7) version 1.8, the most popular
alignment program with excellent portability and operativity,
and T-COFFEE (9), which provides alignments of the highest
accuracy among known methods to date.

On the other hand, few improvements have been made
successfully to reduce the CPU time, since the proposal of the
progressive method by Feng and Doolittle (3). A high-speed
computer program applicable to large-scale problems is
becoming more important with the rapid increase in the
number of protein and DNA sequences. In order to improve
the speed of DP, it is effective to use highly homologous
segments in the procedure of multiple sequence alignment
(10). There are well-known homology search programs, such
as FASTA (11) and BLAST (12), based on string matching
algorithms.

In this report, we developed a novel method for multiple
sequence alignment based on the fast Fourier transform (FFT),
which allows rapid detection of homologous segments. In
spite of its great ef®ciency, FFT has rarely been used
practically for detecting sequence similarities (13,14). We
also propose an improved scoring system, which performs
well even for sequences having large insertions or extensions
as well as distantly related sequences of similar length. The
ef®ciency (CPU time and accuracy) of the method was
tested by computer simulations and the BAliBASE (15)
benchmark tests in comparison with several existing methods.
These tests showed that the CPU time has been drastically
reduced, whereas the accuracy of the resulting alignments is
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comparable with that of the most accurate methods among
existing ones.

METHODS

Group-to-group alignments by FFT

The frequency of amino acid substitutions strongly depends on
the difference of physico-chemical properties, particularly
volume and polarity, between the amino acid pair involved in
the substitution (16). Substitutions between physico-chemic-
ally similar amino acids tend to preserve the structure of
proteins, and such neutral substitutions have been accumu-
lated in molecules during evolution (17). It is therefore
reasonable to consider that an amino acid a is assigned to a
vector whose components are the volume value v(a) and the
polarity value p(a) introduced by Grantham (18). We use the
normalized forms of these values: vÃ(a) = [v(a) ± vÅ]/sv and
pÃ(a) = [ p(a) ± pÅ]/sp, where an overbar denotes the average
over 20 amino acids, and sv and sp denote the standard
deviations of volume and polarity, respectively. An amino
acid sequence is converted to a sequence of such vectors.

Calculation of the correlation between two amino acid
sequences. We de®ne the correlation c(k) between two
sequences of such vectors as

c(k) = cv(k) + cp(k), 1

where cv(k) and cp(k) are, as de®ned below, the correlations of
volume component and polarity component, respectively,
between two amino acid sequences to be aligned. The
correlation c(k) represents the degree of similarity of two
sequences with the positional lag of k sites. The high value of
c(k) indicates that the sequences may have homologous
regions.

The correlation cv(k) of volume component between
sequence 1 and sequence 2 with the positional lag of k sites
is de®ned as

cv�k� �
X

1�n�N;1�n�k�M

Ãv1�n�Ãv2�n� k�; 2

where vÃ1(n) and vÃ2(n) are the volume component of the nth site
of sequence 1 with the length of N and that of sequence 2 with
the length of M, respectively. Considering N ' M in many
cases, equation 2 takes O(N2) operations. The FFT reduces the
CPU time of this calculation to O(N log N) (19). If V1(m) and
V2(m) are the Fourier transform of vÃ1(n) and vÃ2(n), i.e.

vÃ1(n) Û V1(m) 3

vÃ2(n) Û V2(m), 4

it is known that the correlation cv(k) is expressed as

cv(k) Û V1
*(m) ´ V2(m), 5

where Û represents transform pairs, and the asterisk denotes
complex conjugation.

The correlation cp(k) of polarity component between two
sequences

cp�k� �
X

1�n�N;1�n�k�M

Ãp1�n�Ãp2�n� k� 6

is calculated in the same manner.

Finding homologous segments. If two sequences compared
have homologous regions, the correlation c(k) has some peaks
corresponding to these regions (Fig. 1A). By the FFT analysis,
however, we can know only the positional lag k of a
homologous region in two sequences but not the position of
the region. As shown in Figure 1B, to determine the positions
of the homologous region in each sequence, a sliding window
analysis with the window size of 30 sites is carried out, in
which the degree of local homologies is calculated for each of
the highest 20 peaks in the correlation c(k). We identify a
segment of 30 sites with score value exceeding a given
threshold (0.7 per site in our program, see below for details of
the scoring system) as a homologous segment. If two or more
successive segments are identi®ed as homologous segments,
they are combined into one segment of larger length. If the
length of the combined segment is longer than 150 sites, the
segment is divided into several segments with 150 sites each.

Dividing a homology matrix. To obtain an alignment between
two sequences, the homologous segments must be arranged
consistently in both sequences. A matrix Sij(1 < i, j < n, n is
the number of homologous segments) is constructed in the
following manner. If the ith homologous segment on sequence
1 corresponds to the jth homologous segment on sequence 2,
Sij has the score value of the homologous segment calculated
above; otherwise Sij is set to 0. By applying the standard DP
procedure to matrix Sij, we obtain the optimal path, which
corresponds to the optimal arrangement of homologous
segments. Figure 2A shows an example in which ®ve
homologous segments exist. The order of segments in

Figure 1. (A) A result of the FFT analysis. There are two peaks correspond-
ing to two homologous blocks. (B) Sliding window analysis is carried out
and the positions of homologous blocks are determined. Note that window
size is 30 (see text) but the window size is set to 4 in (B) for simplicity.
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sequence 1 differs from that in sequence 2. The optimal path
depends on S23 and S32; if S23 > S32, the path with bold arrows
is optimal.

Overall homology matrix is divided into some sub-matrices
at the boundary corresponding to the center of homologous
segments as illustrated in Figure 2B. As a result, the shaded
area in Figure 2B is excluded from the calculation. As many
homologous segments are detected by FFT, the CPU time is
reduced.

Extension to group-to-group alignments. The procedure
described above can be easily extended to group-to-group
alignment by considering equations 2 and 6 as a special case
with one sequence in each group. These equations are
extended to group-to-group alignment by replacing vÃ1(n)
with vÃgroup1(n), which is the linear combination of the volume
components of the members belonging to group 1:

Ãvgroup1�n� �
X

i2group1

wi � Ãvi�n�;

where wi is the weighting factor for sequence i, which is
calculated in the same manner as CLUSTALW (7) for the
progressive method, or in the same manner as Gotoh's (20)
weighting system for the iterative re®nement method.
Similarly, polarity component is calculated as:

Ãpgroup1�n� �
X

i2group1

wi � Ãpi�n�:

This method is applicable to nucleotide sequences by
converting a sequence to a sequence of four-dimensional
vectors whose components are the frequencies of A, T, G and
C at each column, instead of volume and polarity values. In
this case, correlation between two nucleotide sequences is:

c(k) = cA(k) + cT(k) + cG(k) + cC(k).

Scoring system

Similarity matrix. In order to increase the ef®ciency of
alignment, the scoring system (similarity matrix and gap
penalties) was also modi®ed. Vogt et al. (21) suggested that

the Needleman±Wunsch (NW) algorithm performs well with
all-positive matrices, in which all elements have positive
values. CLUSTALW (7) and other methods use such all-
positive matrices by default. Since Vogt et al. (21) examined
only the cases in which members of each protein familiy are
similar in length, it is not clear whether such all-positive
matrices are suitable to various alignment problems, particu-
larly to those of different length. Accordingly, contrary to
existing methods, we adopted a normalized similarity matrix
MÃ ab (a and b are amino acids) that has both positive and
negative values:

MÃ ab = [(Mab ± average2)/(average1 ± average2)] + Sa, 7

where average1 = SafaMaa, average2 = Sa,bfafbMab, Mab is raw
similarity matrix, fa is the frequency of occurrence of amino
acid a, and Sa is a parameter that functions as a gap extension
penalty. Under this similarity matrix MÃ ab, the score per site
between two random sequences is Sa, and the score per site
between two identical sequences is 1.0 + Sa. If Sa is much
smaller than unity, gaps are scored virtually equivalent to
random amino acid sequences.

The default parameters of our program are: Mab is the 200
PAM log-odds matrix by Jones et al. (22), fa is the frequency
of occurrence for amino acid a calculated by Jones et al. (22),
Sop (gap opening penalty, de®ned below) is 2.4 and Sa is 0.06,
for amino acid sequences. For nucleic acid sequences, Mab is
the 200 PAM log-odds matrix calculated from Kimura's two
parameter model (23) with transition/transversion ratio of 2.0,
fa is 0.25, Sop is 2.4 and Sa is 0.06.

Gap penalty. Homology matrix H(i, j) between two amino
acid sequences A(i) and B(j) is constructed from the similarity
matrix as H(i, j) = MÃ A(i)B(i), where i and j are positions in
sequences. When two groups of sequences are aligned,
homology matrix between group 1 and group 2 is calculated
as:

H�i; j� �
X

n2group1;m2group2

wnwm
ÃMA�n; i�B�m; j�;

where A(n, i) indicates the ith site of the nth sequence in group
1, B(m, j) is the jth site of the mth sequence in group 2, and wn

is the weighting factor, de®ned previously, for nth sequences.
In the NW algorithm (1), the optimal alignment between

two groups of sequences is calculated as:

P�i; j� � H�i; j� �max
P�iÿ 1; jÿ 1�
P�x; jÿ 1�ÿ G1�i; x� �1 � x < iÿ 1�
P�iÿ 1; y�ÿG2�j; y� �1 � y < jÿ 1�;

8><>:
where P(i,j) is the accumulated score for the optimal path from
(1,1) to (i, j), and G1(i, x) and G2(j, y) are gap penalties de®ned
below.

Each group of sequences may contain the gaps already
introduced at previous steps. If a gap is newly introduced at the
same position as one of such existing gaps, the new gap should

Figure 2. (A) An example of the segment-level DP; (B) Reducing the area
for DP on a homology matrix.
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not be penalized, because these new and existing gaps are
probably resulting from a single insertion or deletion event.
Gotoh (6) and Thompson et al. (7) developed position-speci®c
gap penalties depending on the pattern of existing gaps. Our
method used in this report is rather simpler than theirs:

G1(i, x) = Sop ´ {1 ± [g1
start(x) + g1

end(i)]/2},

where Sop corresponds to a gap opening penalty, g1
start(x) is the

number of the gaps that start at the xth site, and g1
end(i) is the

number of the gaps that end at the ith site. That is,

gstart
1 �x� �

X
m2group1

wm � am�x� � zm�x� 1�

gend
1 �i� �

X
m2group1

wm � zm�iÿ 1� � am�i�;

where zm(i) = 1 and am(i) = 0, if the ith site of sequence m is a
gap; otherwise zm(i) = 0 and am(i) = 1; wm is the weighting
factor for sequence m. The other penalty G2(j, y) is calculated
in the same manner. Because this formulation is simpler than
existing ones (6,7), the CPU time is considerably reduced, but
the accuracy of resulting alignments is comparable with that
by existing scoring systems (see Results).

Computer programs

We have developed a program package MAFFT, which
incorporates new techniques described above. The source
code for the FFT algorithm has been taken from Press et al.
(19). In MAFFT, the progressive method (3,7) (FFT-NS-1,
FFT-NS-2) and the iterative re®nement method (4±6) (FFT-
NS-i) are implemented with some slight modi®cations
described below.

FFT-NS-1. Using the FFT algorithm and the normalized
similarity matrix described above, input sequences are
progressively aligned following the branching order of
sequences in the guide tree. This method is hereafter referred
to as FFT-NS-1. This method requires a guide tree based on
the all-pairwise comparison, whose CPU time is O(K2), where
K is the number of sequences. Rapid calculation of a distance
matrix is important for the case of large K. Thus we adopted
the method of Jones et al. (22) with two modi®cations; 20
amino acids are grouped into six physico-chemical groups
(24), and the number Tij of 6-tuples shared by sequence i and
sequence j is counted. This value is converted to a distance Dij

between sequence i and sequence j as

Dij = 1 ± [Tij/min(Tii, Tjj)].

The guide tree is constructed from this distance matrix using
the UPGMA method (25).

FFT-NS-2. Input sequences are realigned along the guide tree
inferred from the alignment by FFT-NS-1. It is expected that
more reliable alignments are obtained on the basis of more

reliable guide trees (26). This method is referred to as FFT-
NS-2.

FFT-NS-i. An alignment obtained by FFT-NS-2 is subjected to
further improvement, in which the alignment is divided into
two groups and realigned (4±6). We employ a technique called
tree-dependent restricted partitioning (27). This process is
repeated until no better scoring alignment is obtained in
respect of the score described above. This method is referred
to as FFT-NS-i.

To test the effect of the FFT algorithm or the normalized
similarity matrix described above, we compared these
three methods with several methods in which these newly
developed techniques are not used.

NW-NS-1/NW-NS-2. We examined a method that uses the
standard NW algorithm, instead of the FFT algorithm, with the
normalized similarity matrix described above. This method is
referred to as NW-NS-1 or NW-NS-2. Concerning the guide
trees, NW-NS-1 and NW-NS-2 are identical to FFT-NS-1 or
FFT-NS-2, respectively.

NW-AP-2. To test the effect of the normalized similarity
matrix described above, we examined a method with conven-
tional all-positive similarity matrix (21), which is made
positive by subtracting the smallest number in the matrix from
all elements. This is equivalent to setting Sa in equation 7 to
0.82 for the similarity matrix we use. This method is referred
to as NW-AP-2. Except for the similarity matrix, the
procedure of NW-AP-2 is identical to that of NW-NS-2.

RESULTS

Computer simulations

In order to evaluate the performance of the present methods,
we have conducted computer simulations focusing on the CPU
time and the accuracy. Using the sequences generated by a
simulation program ROSE (28), the CPU times of the present
methods and two existing methods, CLUSTALW version 1.82
and T-COFFEE, were compared for the various length and the
various numbers of sequences. Two types of sequence sets
were used; one is composed of highly conserved sequences
with ~35±85% identities (average distance is 100 PAM), and
the other is a group of distantly related sequences with
~15±65% identities (average distance is 250 PAM). We also
estimated the order of CPU time [Y of O(XY), where X is the
length or the number of input sequences] by the power
regression analysis.

Figure 3 shows the dependence of CPU time on sequence
length. The regression coef®cient of each method is also
shown. The standard NW-based methods, CLUSTALW and
NW-NS-2, require the CPU time proportional to the square of
sequence length (the regression coef®cients are close to 2 for
both methods) independently of the degrees of sequence
similarities, as expected. In contrast, the CPU times of FFT-
based methods, FFT-NS-2 and FFT-NS-i, depend on the
degree of similarities of input sequences; the CPU times of
FFT-NS-2 and FFT-NS-i are virtually proportional to the
sequence length for highly conserved sequences (regression
coef®cients are close to 1 in Fig. 3A), whereas the CPU time of
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FFT-NS-2 is close to that of NW-NS-2 for distantly related
sequences (Fig. 3B).

Figure 4A and B show the dependence of CPU times on the
number (K) of input sequences. The time consumption of
T-COFFEE is O(K3) for alignments of relatively large number
of sequences, as Notredame et al. (9) estimated. CLUSTALW
(default), which requires the all-pairwise comparison by the
standard NW algorithm, consumes O(K2) CPU time. Other
methods require CPU times of approximately O(K).

To test the accuracy, ®ve newly developed methods, FFT-
NS-1, FFT-NS-2, NW-NS-1, NW-NS-2 and FFT-NS-i, were
applied to the sequences of various homology levels generated
by ROSE (28). The accuracy of each method was measured by
sum-of-pairs score, where a reconstructed alignment is
compared with the simulated (`correct') alignment and the
ratio of correctly aligned pairs is calculated from all possible
pairs (8). The simulations were repeated 100 times and
averaged for each method (Fig. 5).

The accuracy of FFT-based methods (FFT-NS-1 and FFT-
NS-2) is almost equivalent to that of standard NS-based
methods (NW-NS-1 and NW-NS-2). This result indicates that

the FFT algorithm does not sacri®ce the accuracy. FFT-NS-2
performs better than FFT-NS-1 as expected. FFT-NS-i has an
advantage in accuracy over FFT-NS-1 and FFT-NS-2 for
distantly related sequences.

Figure 4. The plot of CPU time versus the number of input sequences for
three methods described in the text, FFT-NS-2 and FFT-NS-i, and two exist-
ing methods, CLUSTALW and T-COFFEE. The average percent identities
among input sequences are ~35±85% (A) and ~15±65% (B). The average
length of input sequences is 300. The regression coef®cient calculated from
the power regression analysis is shown for each method. For all cases, de-
fault parameters were used, except for CLUSTALW, in which both cases
default setting (CLW18d) and `quicktree' option (CLW18q) were examined.
All of the calculations were performed on a Linux operating system (Intel
Xeon 1.7 GHz with 1 GB of memory). The gcc version 2.96 compiler was
used with the optimization option `-O3'.

Figure 3. The plot of CPU time versus the average lengths of input se-
quences for three methods described in the text, FFT-NS-2, FFT-NS-i and
NW-NS-2, and two existing methods, CLUSTALW and T-COFFEE. The
average percent identities among input sequences are ~35±85% (A) and
~15±65% (B). The number of sequences is 40. The regression coef®cient
calculated from the power regression analysis is shown for each method.
For all cases, default parameters were used, except for CLUSTALW, in
which both cases default setting (CLW18d) and `quicktree' option
(CLW18q) were examined. All of the calculations were performed on a
Linux operating system (Intel Xeon 1.7 GHz with 1 GB of memory). The
gcc version 2.96 compiler was used with the optimization option `-O3'.

Figure 5. The plot of sum-of-pairs score (8) versus the average distance of
input sequences for ®ve methods, FFT-NS-1, FFT-NS-2, FFT-NS-i, NW-
NS-1 and NW-NS-2. The number of input sequences is 40, and sequence
lengths are 200 sites on average. Vertical lines indicate the standard devi-
ations of the scores. For all cases, default parameters were used.
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Benchmarks using BAliBASE

Thompson et al. (8) have published a systematic comparison
of widely distributed alignment programs using the
BAliBASE benchmark alignment database (15), a database
of `correct' alignments based on three-dimensional structural
superimpositions. The BAliBASE database is categorized into
®ve different types of references. The ®rst category is made up
of phylogenetically equidistant members of similar length. In
the second category, each alignment contains up to three
orphan sequences with a group of close relatives. The third
category contains up to four distantly related groups, while the
fourth and ®fth categories involve long terminal and internal
insertions, respectively. These references will be referred to as
categories 1±5 hereafter.

We have applied four methods described in Methods, NW-
AP-2, NW-NS-2, FFT-NS-2 and FFT-NS-i, to this database to
compare their ef®ciencies with those of ®ve existing methods,
DIALIGN (29,30), PIMA (31), CLUSTALW (7) version 1.82,
PRRP (32) and T-COFFEE (9). The sum-of-pairs scores (see
above) and the column scores [the ratio of correctly aligned
columns (8)] were calculated and averaged in each category.
Wilcoxon matched-pair signed-rank test and t-test were
carried out to test the signi®cance of the difference in the
accuracy of each method. These tests give P-values, which is
the probability that the observed differences may be due to
chance.

Table 1 shows the results of this benchmark test together
with the CPU time of each method for performing this test.
Unlike the simulation above, FFT-NS-2 (FFT-based method)
takes CPU time almost equivalent to NW-NS-2. This is
because the FFT algorithm is not ef®cient for distantly related
sequences like these tests. NW-NS-2 takes less CPU time than
CLUSTALW does, possibly because of the simple calculation
procedure of the former. FFT-NS-i takes less CPU time than
T-COFFEE does.

The accuracy of NW-AP-2, which contains neither the
improved scoring system described above nor the FFT
algorithm, is comparable with that of the previous version
(1.7) of CLUSTALW (data not shown). By using the
improved scoring system shown in equation 7, NW-NS-2
and FFT-NS-2 perform considerably better than NW-AP-2.
T-COFFEE marked the highest average accuracy, but the
accuracy of FFT-NS-i is comparable with that of T-COFFEE.
P-values by Wilcoxon matched-pair signed-rank test are 0.13
for sum-of-pairs score and 0.43 for column score, and
P-values by t-test are 0.10 for sum-of-pairs score and 0.23
for column score. Thus the difference is not signi®cant.

Applications to the LSU rRNA and RNA polymerase
sequences

BAliBASE is biased toward alignments composed of a small
number of short sequences; the number of sequences in each
alignment is 9.2 and sequence length is 251.1 on average. To
illustrate the power of our approach to practical sequence
analyses, we selected two examples of relatively large data
sets: the nucleotide sequences of LSU rRNA and the amino
acid sequences of the RNA polymerase largest subunit.

LSU rRNA. The Ribosomal Database Project (RDP-II) (33)
contains 72 LSU rRNA sequences from Bacteria, Archaea and
Eucarya. This alignment was used as a reference alignment.
We also use another reference alignment of 59 sequences in
which fragment sequences were excluded from the full 72
sequences set (the reference alignments are available at http://
www.biophys.kyoto-u.ac.jp/~katoh/align/example/lsu). The
CPU times and the sum-of-pairs and column scores (8) of
NW-AP-2, NW-NS-2, FFT-NS-2 and FFT-NS-i were com-
pared with those of two existing methods, CLUSTALW
(version 1.82) and T-COFFEE using these two data sets
(Table 2). The FFT-based methods (FFT-NS-2 and FFT-NS-i)
are ef®cient for such relatively large data sets.

Table 1. Sum-of-pairs scores and column scores of various alignment methods for the BAliBASE benchmark tests

Method CPU time (s) Cat. 1 Cat. 2 Cat. 3 Cat. 4 Cat. 5 Average1 Average2

Progressive methods
PIMA 1116 0.825/0.737 0.751/0.127 0.525/0.262 0.700/0.480 0.788/0.555 0.772/0.558 0.718/0.432
CLW18d 2202 0.871/0.792 0.856/0.329 0.754/0.490 0.745/0.417 0.852/0.617 0.844/0.639 0.816/0.529
CLW18q 1657 0.871/0.790 0.859/0.334 0.763/0.473 0.728/0.402 0.887/0.709 0.847/0.644 0.824/0.542
NW-AP-2 250 0.842/0.746 0.833/0.268 0.770/0.443 0.703/0.311 0.851/0.667 0.821/0.593 0.800/0.487
NW-NS-2 243 0.849/0.761 0.844/0.334 0.779/0.486 0.797/0.532 0.951/0.826 0.845/0.652 0.844/0.588
FFT-NS-2 227 0.849/0.761 0.844/0.334 0.779/0.486 0.797/0.532 0.951/0.826 0.845/0.652 0.844/0.588

Iterative re®nement methods and T-COFFEE
DIALIGN2-1 18132 0.792/0.681 0.814/0.219 0.673/0.327 0.818/0.615 0.938/0.840 0.801/0.584 0.807/0.536
PRRP 9782 0.871/0.793 0.860/0.354 0.823/0.569 0.663/0.275 0.885/0.742 0.845/0.646 0.820/0.547
T-COFFEE 12065 0.876/0.797 0.856/0.343 0.777/0.497 0.811/0.555 0.961/0.901 0.865/0.683 0.856/0.619
FFT-NS-i 1466 0.864/0.787 0.853/0.363 0.789/0.518 0.799/0.534 0.956/0.835 0.857/0.675 0.852/0.607

Number of alignments 82 23 12 15 12 144 ±

Categories (Cat.) 1±5 correspond to ®ve different categories of alignments described in the text. Two types of scores averaged across alignments of each
category are shown in each column, separated by a slash (the average of sum-of-pairs scores/the average of column scores). Average1 gives the average score
across all the 144 alignments. Since the number of alignments differs for different categories ranging from 12 to 82, another type of average score
(Average2), i.e. the score averaged across the ®ve categories, was calculated for each method after Notredame et al. (9). Total CPU time for computing all
144 alignments is also shown for each method. For all cases, default parameters were used, except for CLUSTALW, in which both cases default setting
(indicated by CLW18d) and `quicktree' option (CLW18q) were examined. All calculations were performed on a Sun Ultra/2 workstation (UltraSPARC 168
MHz with 128 MB of memory, Solaris 2.6). The gcc version 2.8.1 compiler was used with the optimization option `-O3', except for DIALIGN, for which the
pre-compiled version by the authors was used.
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The largest subunit of RNA polymerase. We used a reference
alignment of the largest subunit sequences of RNA polymer-
ase by Iwabe et al. (34), which includes 11 highly conserved
blocks. Two data sets, one (large) composed of 76 sequences
and the other (small) composed of 24 sequences, were
compiled. Both of them contain amino acid sequences from
Bacteria, Archaea and three major classes (I, II and III)
from Eucarya (the reference alignments are available at
http://www.biophys.kyoto-u.ac.jp/~katoh/align/example/rpol).
Table 3 shows the CPU time and the number of correctly
detected conserved blocks of sequences by six methods: NW-
AP-2, FFT-NS-2, NW-NS-2, FFT-NS-i, CLUSTALW version
1.82 and T-COFFEE. T-COFFEE, FFT-NS-2, FFT-NS-i and
NW-NS-2 successfully detected all of the 11 blocks, although
the CPU times differ for different methods. The CPU time of
FFT-NS-2 (FFT-based method) is about one-third of that of
NW-NS-2 (standard NW-based method).

DISCUSSION

It has been supposed that appropriate alignment algorithm
depends on the nature of the sequences to be aligned (8,35);
the NW algorithm produces accurate and reliable alignments
for references 1, 2 and 3 in BAliBASE, whereas the
Smith±Waterman (SW) algorithm (36), a method for detecting
local homology, is successful for categories 4 and 5. It may be
quite impractical to select properly these different algorithms,
depending on the nature of input sequences; actual sequence
data contain various types of sequences, i.e. fragment
sequences, fusion proteins, orphan sequences, over-represent-
ation of some members and so on.

On the basis of such considerations, Notredame et al. (9)
formulates a combination of NW and SW alignment pro-
cedures in T-COFFEE. This attempt is successful in improv-
ing the accuracy at the sacri®ce of the computational
simplicity. Thus, this method may be applicable to short and
small data sets like those in BAliBASE as Karplus and Hu (37)
pointed out. In contrast, the present methods employ a simple
NW algorithm (NW-NS-2) or a more rapid algorithm based on
FFT (FFT-NS-2 and FFT-NS-i). Nevertheless, the BAliBASE
benchmark tests show that the present methods with the
normalized similarity matrix perform well also for categories
4 and 5. As a result, the accuracy of FFT-NS-i is comparable
with that of T-COFFEE. This result indicates that the accuracy
of alignments can be considerably improved without com-
plicating any computational process, contrary to the conven-
tional thought that a combination of the NW and SW
algorithms was necessary for computing high-quality align-
ments (8,9,35). The improvement in accuracy was achieved
simply by normalizing the similarity matrix.

This suggests the importance of parameter choice as
Thompson et al. (7,8) pointed out. However, there is a large
difference between their strategy and ours. The scoring system
used in CLUSTALW is complicated and time consuming;
many parameters in the scoring system dynamically vary
depending on input sequences. In contrast, the present scoring
system is simple; the similarity matrix is ®xed for any input
sequences, and even extension gap penalty is not explicitly
contained in the DP algorithm. Nevertheless, the accuracy
of NW-NS-2/FFT-NS-2 is comparable with that of
CLUSTALW.

In all cases tested above, the present methods consume
generally less CPU time than existing methods of comparable

Table 3. Comparison of several methods using the largest subunit
sequences of RNA polymerase

Method CPU time (s) Number of
correctly aligned
blocks

76 sequences 3 1182±2890 sites
CLW18d 675.5 10
CLW18q 159.4 10
NW-AP-2 54.95 8
NW-NS-2 59.30 11
FFT-NS-2 18.15 11
FFT-NS-i 173.1 11

24 sequences 3 1206±2890 sites
T-COFFEE 745.3 11
CLW18d 100.1 9
CLW18q 50.78 9
NW-AP-2 20.79 10
NW-NS-2 22.77 11
FFT-NS-2 7.150 11
FFT-NS-i 46.00 11

The CPU time and the number of correctly aligned blocks by each method
are shown for a large data set composed of 76 sequences and a small data
set composed of 24 sequences. In the case of the large data set, the test of
T-COFFEE was aborted due to a memory shortage. For all cases, default
parameters were used, except for CLUSTALW, in which both cases default
setting (CLW18d) and `quicktree' option (CLW18q) were examined. All
calculations were performed on a Linux operating system (Intel Xeon
1.7 GHz with 1 GB of memory). The gcc compiler (version 2.96) was used
with the optimization option `-O3'.

Table 2. Comparison of several methods using the LSU rRNA sequences

Method CPU time (s) Sum-of-pairs
score

Column
score

72 sequences 3 1305±5183 sites
CLW18d 1998 0.692 ±
CLW18q 600.2 0.597 ±
NW-AP-2 197.0 0.796 ±
NW-NS-2 205.2 0.770 ±
FFT-NS-2 73.39 0.769 ±
FFT-NS-i 251.8 0.781 ±

59 sequences 3 2810±5183 sites
T-COFFEE 35 860 0.806 0.559
CLW18d 1523 0.754 0.411
CLW18q 395.6 0.643 0.315
NW-AP-2 153.7 0.823 0.482
NW-NS-2 159.8 0.793 0.463
FFT-NS-2 51.09 0.794 0.468
FFT-NS-i 181.7 0.817 0.552

The CPU time and the sum-of-pairs and column scores (8) of each method
are shown for the full LSU data set (72 sequences) retrieved from RDP-II
(33), which includes some fragment sequences, and a subset composed of
59 sequences without fragment sequences. In the case of the full LSU data
set, the column score cannot be calculated because of fragment sequences,
and the test of T-COFFEE is aborted due to a memory shortage. The default
parameters were used for all methods, except for CLUSTALW, in which
default setting (CLW18d) and `quicktree' option (CLW18q) were examined.
All calculations were performed on a Linux operating system (Intel Xeon
2 GHz with 4 GB of memory). The gcc compiler (version 2.96) was used
with the optimization option `-O3'.
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accuracy do. It is remarkable that the order of CPU time is
reduced from O(N2) to O(N) by the FFT algorithm for highly
conserved sequences (Fig. 3A), where N is sequence length.
Such a rapid multiple alignment method is suitable for
automated high-throughput analysis of genomic sequences. At
the same time, biologists' expertise is still of particular
importance and, consequently, a user-friendly alignment
workbench is required, which provides easy access to the
various information collected by database searches, alignment
analyses and the predictions obtained by non-homology
methods (38). The method presented here is also useful as a
core component of such an integrated alignment workbench.

The MAFFT program package is freely available at http://
www.biophys.kyoto-u.ac.jp/~katoh/programs/align/mafft. It
has been tested on the Linux operating system. A graphical
user interface, written by H. Suga, K. Katoh, Y. Yamawaki,
K. Kuma, D. Hoshiyama, N. Iwabe and T. Miyata, on the
X Window System is also available at http://www.biophys.
kyoto-u.ac.jp/~katoh/programs/align/xced.

ACKNOWLEDGEMENTS

We thank Drs N. Iwabe, H. Suga and D. Hoshiyama for
helpful comments. This work was supported by grants from
the Ministry of Education, Culture, Sports, Science and
Technology of Japan.

REFERENCES

1. Needleman,S.B. and Wunsch,C.D. (1970) A general method applicable
to the search for similarities in the amino acid sequence of two proteins.
J. Mol. Biol., 48, 443±453.

2. Sankoff,D. and Cedergren,R.J. (1983) Simultaneous comparison of three
or more sequences related by a tree. In Sankoff,D. and Kruskal,J.B. (eds),
Time Warps, String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison. Addison-Wesley, London, UK, pp. 253±264.

3. Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment as a
prerequisite to correct phylogenetic trees. J. Mol. Evol., 25, 351±360.

4. Barton,G.J. and Sternberg,M.J. (1987) A strategy for the rapid multiple
alignment of protein sequences. Con®dence levels from tertiary structure
comparisons. J. Mol. Biol., 198, 327±337.

5. Berger,M.P. and Munson,P.J. (1991) A novel randomized iterative
strategy for aligning multiple protein sequences. Comput. Appl. Biosci.,
7, 479±484.

6. Gotoh,O. (1993) Optimal alignment between groups of sequences and its
application to multiple sequence alignment. Comput. Appl. Biosci., 9,
361±370.

7. Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-speci®c gap penalties and weight
matrix choice. Nucleic Acids Res., 22, 4673±4680.

8. Thompson,J.D., Plewniak,F. and Poch,O. (1999) A comprehensive
comparison of multiple sequence alignment programs. Nucleic Acids
Res., 27, 2682±2690.

9. Notredame,C., Higgins,D.G. and Heringa,J. (2000) T-Coffee: a novel
method for fast and accurate multiple sequence alignment. J. Mol. Biol.,
302, 205±217.

10. Delcher,A.L., Kasif,S., Fleischmann,R.D., Peterson,J., White,O. and
Salzberg,S.L. (1999) Alignment of whole genomes. Nucleic Acids Res.,
27, 2369±2376.

11. Pearson,W.R. and Lipman,D.J. (1988) Improved tools for biological
sequence comparison. Proc. Natl Acad. Sci. USA, 85, 2444±2448.

12. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic Acids Res.,
25, 3389±3402.

13. Felsenstein,J., Sawyer,S. and Kochin,R. (1982) An ef®cient method for
matching nucleic acid sequences. Nucleic Acids Res., 10, 133±139.

14. Rajasekaran,S., Jin,X. and Spouge,J.L. (2002) The ef®cient computation
of position-speci®c match scores with the fast Fourier transform.
J. Comput. Biol., 9, 23±33.

15. Thompson,J.D., Plewniak,F. and Poch,O. (1999) BAliBASE: a
benchmark alignment database for the evaluation of multiple alignment
programs. Bioinformatics, 15, 87±88.

16. Miyata,T., Miyazawa,S. and Yasunaga,T. (1979) Two types of amino
acid substitutions in protein evolution. J. Mol. Evol., 12, 219±236.

17. Kimura,M. (1983) The Neutral Theory of Molecular Evolution.
Cambridge University Press, Cambridge, UK.

18. Grantham,R. (1974) Amino acid difference formula to help explain
protein evolution. Science, 185, 862±864.

19. Press,W.H., Teukolsky,S.A., Vetterling,W.T. and Flannery,B.P. (1995)
Numerical Recipes in C: The Art of Scienti®c Computing, 2nd Edn.
Cambridge University Press, Cambridge, UK.

20. Gotoh,O. (1995) A weighting system and algorithm for aligning many
phylogenetically related sequences. Comput. Appl. Biosci., 11, 543±551.

21. Vogt,G., Etzold,T. and Argos,P. (1995) An assessment of amino acid
exchange matrices in aligning protein sequences: the twilight zone
revisited. J. Mol. Biol., 249, 816±831.

22. Jones,D.T., Taylor,W.R. and Thornton,J.M. (1992) The rapid generation
of mutation data matrices from protein sequences. Comput. Appl. Biosci.,
8, 275±282.

23. Kimura,M. (1980) A simple method for estimating evolutionary rates of
base substitutions through comparative studies of nucleotide sequences.
J. Mol. Evol., 16, 111±120.

24. Dayhoff,M.O., Schwartz,R.M. and Orcutt,B.C. (1978) A model of
evolutionary change in proteins. In Dayhoff,M.O. and Ech,R.V. (eds),
Atlas of Protein Sequence and Structure. National Biomedical Research
Foundation, MD, pp. 345±352.

25. Sokal,R.R. and Michener,C.D. (1958) A statistical mehod for evaluating
systematic relationships. University of Kansas Scienti®c Bulletin, 28,
1409±1438.

26. Tateno,Y., Ikeo,K., Imanishi,T., Watanabe,H., Endo,T., Yamaguchi,Y.,
Suzuki,Y., Takahashi,K., Tsunoyama,K., Kawai,M., Kawanishi,Y.,
Naitou,K. and Gojobori,T. (1997) Evolutionary motif and its biological
and structural signi®cance. J. Mol. Evol., 44 (Suppl. 1), S38±S43.

27. Hirosawa,M., Totoki,Y., Hoshida,M. and Ishikawa,M. (1995)
Comprehensive study on iterative algorithms of multiple sequence
alignment. Comput. Appl. Biosci., 11, 13±18.

28. Stoye,J., Evers,D. and Meyer,F. (1997) Generating benchmarks for
multiple sequence alignments and phylogenetic reconstructions. Proc.
Int. Conf. Intell. Syst. Mol. Biol., 5, 303±306.

29. Morgenstern,B., Dress,A. and Werner,T. (1996) Multiple DNA and
protein sequence alignment based on segment-to-segment comparison.
Proc. Natl Acad. Sci. USA, 93, 12098±12103.

30. Morgenstern,B. (1999) DIALIGN2: improvement of the segment-to-
segment approach to multiple sequence alignment. Bioinformatics, 15,
211±218.

31. Smith,R.F. and Smith,T.F. (1992) Pattern-induced multi-sequence
alignment (PIMA) algorithm employing secondary structure-dependent
gap penalties for use in comparative protein modelling. Protein Eng., 5,
35±41.

32. Gotoh,O. (1996) Signi®cant improvement in accuracy of multiple protein
sequence alignments by iterative re®nement as assessed by reference to
structural alignments. J. Mol. Biol., 264, 823±838.

33. Maidak,B.L., Cole,J.R., Lilburn,T.G., Parker,C.T.,Jr, Saxman,P.R.,
Farris,R.J., Garrity,G.M., Olsen,G.J., Schmidt,T.M. and Tiedje,J.M.
(2001) The RDP-II (ribosomal database project). Nucleic Acids Res., 29,
173±174.

34. Iwabe,N., Kuma,K., Kishino,H., Hasegawa,M. and Miyata,T. (1991)
Evolution of RNA polymerases and branching patterns of the three major
groups of archaebacteria. J. Mol. Evol., 32, 70±78.

35. McClure,M.A., Vasi,T.K. and Fitch,W.M. (1994) Comparative analysis
of multiple protein-sequence alignment methods. Mol. Biol. Evol., 11,
571±592.

36. Smith,T.F. and Waterman,M.S. (1981) Identi®cation of common
molecular subsequences. J. Mol. Biol., 147, 195±197.

37. Karplus,K. and Hu,B. (2001) Evaluation of protein multiple alignments
by SAM-T99 using the BAliBASE multiple alignment test set.
Bioinformatics, 17, 713±720.

38. Lecompte,O., Thompson,J.D., Plewniak,F., Thierry,J. and Poch,O.
(2001) Multiple alignment of complete sequences (MACS) in the post-
genomic era. Gene, 270, 17±30.

3066 Nucleic Acids Research, 2002, Vol. 30 No. 14


