
Vol. 23 no. 3 2007, pages 372–374

doi:10.1093/bioinformatics/btl592BIOINFORMATICS APPLICATIONS NOTE

Sequence analysis

PartTree: an algorithm to build an approximate tree from a large

number of unaligned sequences
Kazutaka Katoh1,� and Hiroyuki Toh2
1Digital Medicine Initiative, Kyushu University, Fukuoka 812-8582, Japan and 2Medical Institute of Bioregulation,
Kyushu University, Fukuoka 812-8582, Japan

Received on August 23, 2006; revised on October 30, 2006; accepted on November 17, 2006

Advance Access publication November 21, 2006

Associate Editor: Thomas Lengauer

ABSTRACT

Motivation: To construct a multiple sequence alignment (MSA) of

a large number (>�10000) of sequences, the calculation of a guide

tree with a complexity of O (N2) to O (N3), where N is the number of

sequences, is the most time-consuming process.

Results: To overcome this limitation, we have developed an approxi-

mate algorithm,PartTree, to construct a guide treewith anaverage time

complexity of O (N log N ). The new MSA method with the PartTree

algorithm can align �60000 sequences in several minutes on a stan-

dard desktop computer. The loss of accuracy in MSA caused by this

approximation was estimated to be several percent in benchmark tests

using Pfam.

Availability: The present algorithm has been implemented in the

MAFFT sequence alignment package (http://align.bmr.kyushu-u.ac.

jp/mafft/software/).

Contact: katoh@bioreg.kyushu-u.ac.jp

Supplementary information: Supplementary information is available

at Bioinformatics online.

1 INTRODUCTION

Most multiple sequence alignment (MSA) programs use a guide

tree. An MSA is computed along with the tree using a group-

to-group alignment algorithm. When a large number of sequences

are aligned, the construction of guide tree is the time- and space-

limiting process. A distance matrix is usually calculated before

tree building and it requires an O (N2) memory space, where N is

the number of sequences. As for time complexity, MAFFT (Katoh

et al., 2002, 2005) uses an O (N3) algorithm for constructing a

variant of UPGMA guide tree. MUSCLE (Edgar, 2004a,b) uses a

more efficient O (N2) algorithm. In a context where a large number

of sequences are being routinely determined, the scalability of MSA

methods is getting important. For instance, a Pfam (Finn et al.,
2006) alignment of ABC transporter consists of�30 000 sequences

and Ribosomal Database Project II release 9 (Cole et al., 2005)
contains over 200 000 SSU rRNA sequences. Here we describe a

simple divisive clustering algorithm, PartTree, to construct a rough

tree from a set of a large number (more than �10 000) of unaligned

sequences, with an average time complexity of O (N log N ) and

a space complexity of O (N ).

2 ALGORITHM

Let Ni, j represent the number of sequences belonging to group j
at recursive depth i (i � 1). At the initial cycle (i ¼ 1), j ¼ 1 and

N1,1 ¼ N. Otherwise (i > 1), 1 � j and
P

j Ni‚ j ¼ N. The sequences
are classified into n groups at each cycle, where n is a parameter

given by user.

(1) The longest sequence among the Ni, j sequences is selected.

(2) The similarities between the longest sequence and the remain-

ing Ni, j � 1 sequences are calculated.

(3) From the Ni, j sequences, n sequences are picked up as ‘seeds’.
They include (a) the longest sequence, (b) the sequence with

the lowest similarity and (c) randomly selected n � 2

sequences.

(4) The similarities among the n seeds are computed. If two

seeds are highly similar to each other, shorter one is excluded.

The number of the remaining seeds is denoted as n0.

(5) An UPGMA tree is built among the n0 sequences. If n0 � Ni, j,

then the tree is returned to the parent cycle and no further

child cycle is carried out.

(6) The similarities between the n0 seeds and the remaining

N � n0 sequences are calculated. Each of the remaining

sequences is classified into either of n0 groups, according to

the similarity. The number of sequences in group j is denoted
as Ni+1, j, and each group is subjected to the child cycle with

depth i + 1.

(7) The subtrees returned from the n0 child cycles are com-

bined into a single new tree along with the UPGMA tree

calculated in Step 5. The new tree is returned to the parent

cycle.

The number of sequences belonging to group j at depth i
is estimated as Ni, j � Ni�1, j/n � N/ni on average, and the

cycle is recursively repeated until N/nI < n, where I is the

maximum depth. Thus I is proportional to log N on average. At

depth i, O (N ) sequence comparisons are performed. The

overall number of sequence comparisons is therefore proportional

to N log N. The time complexity of the entire procedure depends

on that for computing the similarities at Steps 2, 4 and 6.

This algorithm does not require a standard distance matrix with

N2 elements. Instead, a partial distance matrix, with nNi, j
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elements, is used at each cycle and is freed before calling the child

cycles.

3 APPLICATION

The aforementioned algorithm has been implemented as the Part-

Tree option of an MSA package MAFFT 6.0. See Figure 1B for the

command-line usage. In Steps 2, 4 and 6, we use a rapid method to

compute a similarity based on the number of shared 6mers (Higgins

and Sharp, 1988; Jones et al., 1992; Katoh et al., 2002), with a

length-dependent correction introduced in MAFFT v6 (see the

MAFFT page for details). This algorithm requires O (L ) steps at

every comparison. Thus, the time complexity of the overall proce-

dure isO (LN logN ). We can use more accurate but time-consuming

distance measures, such as FASTA (Pearson and Lipman, 1988),

instead of the 6mer distance. This strategy is also implemented

in MAFFT, as the FastaPartTree option, which requires FASTA

v3.4 installed.

Two-round progressive technique (Katoh et al., 2002) can

be combined with the present method, in which the guide tree

is re-calculated from the initial MSA using PartTree and then

an MSA is re-constructed. This method is referred to as

PartTree-2.

The performances of the present methods were evaluated using a

part (1197 entries) of the Pfam 20.0 database (Finn et al., 2006)
and the full-length set of BAliBASE (Thompson et al., 2005). The
following progressive MSA programs were compared (see Fig. 1B

for detailed list): MUSCLE 3.6 (Edgar, 2004a,b), ClustalW 1.83

(Thompson et al., 1994), Kalign 2.01 (Lassmann and Sonnhammer,

2005), and MAFFT v5 and v6. MAFFT v5 uses a UPGMA

algorithm with a time complexity of O (N3), whereas v6 adopted

a faster UPGMA algorithm proposed in MUSCLE (Edgar, 2004b).

See the mafft page for other differences between v5 and v6. Slower

methods were applied to only smaller subsets (with 500–1000 or

500–10 000 sequences) of Pfam. See Figure 1A for the comparison

of CPU time. Two-round methods are not shown in Figure 1A but

approximately two times slower than the corresponding one-round

methods.

Assuming all the Pfam alignments are correct, the accuracy of

MSA methods were evaluated with overlap score (Lassmann and

Sonnhammer, 2005) between a Pfam alignment and the result of

each MSA method (Fig. 1B). The loss of accuracy of an alignment

by introducing the present approximation gradually increases with

N and was estimated to be �3% when N � 10 000 and n ¼ 50

(Fig. 1C). Note that all the progressive methods shown here are

much less accurate than more elaborate methods, such as TCoffee

[84.6 for overall BAliBASE; Notredame et al. (2000)], ProbCons
[86.5; Do et al. (2005)] and MAFFT-L-INS-i (87.1). As for the

topology of guide tree, the loss of accuracy from rigorous

UPGMA was estimated to be 10% when N � 2000 and n ¼ 50.

See the Supplemental information for detailed discussion on the

accuracy of tree topology.

The FastaPartTree option slightly improves the alignment accu-

racy in comparison with PartTree with 6mer distance, as shown in

Figure 1B, because of more accurate guide tree. The Wu–Manber

algorithm used in Kalign (Lassmann and Sonnhammer, 2005) might

be worth considering as another distance measure. The two-round

progressive method is also a practical solution to improve the accu-

racy of guide tree and alignment, at the cost of roughly doubled

CPU time.
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