; Sparse posterior probability matrix for sequences 0 and 1 ; Format is: ; (0, position_1) ~ (1, position_2) => prob ; which means that (0, position_1) is aligned to (1, position_2) with probability prob. ; (0, position_1) ~ (1, -1) => prob ; means that (0, position_1) is aligned to a gap in 1 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (0, 0) ~ (1, 0) => 0.999999 (0, 1) ~ (1, 1) => 0.999998 (0, 2) ~ (1, 2) => 0.999995 (0, 3) ~ (1, 3) => 0.999994 (0, 4) ~ (1, 4) => 0.999993 (0, 5) ~ (1, 5) => 0.999995 (0, 6) ~ (1, 6) => 0.999996 (0, 7) ~ (1, 7) => 0.999997 (0, 8) ~ (1, 8) => 0.999997 (0, 9) ~ (1, 9) => 0.999998 (0, 10) ~ (1, 10) => 0.999998 (0, 11) ~ (1, 11) => 0.999998 (0, 12) ~ (1, 12) => 0.999998 (0, 13) ~ (1, 13) => 0.999998 (0, 14) ~ (1, 14) => 0.999998 (0, 15) ~ (1, 15) => 0.999997 (0, 16) ~ (1, 16) => 0.999995 (0, 17) ~ (1, 17) => 0.999995 (0, 18) ~ (1, 18) => 0.999994 (0, 19) ~ (1, 19) => 0.999995 (0, 20) ~ (1, 20) => 0.999994 (0, 21) ~ (1, 21) => 0.999992 (0, 22) ~ (1, 22) => 0.999992 (0, 23) ~ (1, 23) => 0.999993 (0, 24) ~ (1, 24) => 0.999993 (0, 25) ~ (1, 25) => 0.999991 (0, 26) ~ (1, 26) => 0.999989 (0, 27) ~ (1, 27) => 0.999986 (0, 28) ~ (1, 28) => 0.999985 (0, 29) ~ (1, 29) => 0.999985 (0, 30) ~ (1, 30) => 0.999988 (0, 31) ~ (1, 31) => 0.99999 (0, 32) ~ (1, 32) => 0.999988 (0, 33) ~ (1, 33) => 0.999982 (0, 34) ~ (1, 34) => 0.999972 (0, 35) ~ (1, 35) => 0.999963 (0, 36) ~ (1, 36) => 0.999959 (0, 37) ~ (1, 37) => 0.999958 (0, 38) ~ (1, 38) => 0.999955 (0, 39) ~ (1, 39) => 0.999953 (0, 40) ~ (1, 40) => 0.999954 (0, 41) ~ (1, 41) => 0.999956 (0, 42) ~ (1, 42) => 0.999963 (0, 43) ~ (1, 43) => 0.999967 (0, 44) ~ (1, 44) => 0.999968 (0, 45) ~ (1, 45) => 0.999975 (0, 46) ~ (1, 46) => 0.999985 (0, 47) ~ (1, 47) => 0.999988 (0, 48) ~ (1, 48) => 0.999988 (0, 49) ~ (1, 49) => 0.999989 (0, 50) ~ (1, 50) => 0.999991 (0, 51) ~ (1, 51) => 0.999994 (0, 52) ~ (1, 52) => 0.999996 (0, 53) ~ (1, 53) => 0.999998 (0, 54) ~ (1, 54) => 0.999998 (0, 55) ~ (1, 55) => 0.999998 (0, 56) ~ (1, 56) => 0.999997 (0, 57) ~ (1, 57) => 0.999996 (0, 58) ~ (1, 58) => 0.999996 (0, 59) ~ (1, 59) => 0.999997 (0, 60) ~ (1, 60) => 0.999998 (0, 61) ~ (1, 61) => 0.999997 (0, 62) ~ (1, 62) => 0.999995 (0, 63) ~ (1, 63) => 0.999994 (0, 64) ~ (1, 64) => 0.999995 (0, 65) ~ (1, 65) => 0.999993 (0, 66) ~ (1, 66) => 0.999985 (0, 67) ~ (1, 67) => 0.999977 (0, 68) ~ (1, 68) => 0.999977 (0, 69) ~ (1, 69) => 0.999979 (0, 70) ~ (1, 70) => 0.999982 (0, 71) ~ (1, 71) => 0.999981 (0, 72) ~ (1, 72) => 0.999982 ; gap posteriors (0, 0) ~ (1, -1) => 0.0001 (0, 1) ~ (1, -1) => 0.0001 (0, 2) ~ (1, -1) => 0.0001 (0, 3) ~ (1, -1) => 0.0001 (0, 4) ~ (1, -1) => 0.0001 (0, 5) ~ (1, -1) => 0.0001 (0, 6) ~ (1, -1) => 0.0001 (0, 7) ~ (1, -1) => 0.0001 (0, 8) ~ (1, -1) => 0.0001 (0, 9) ~ (1, -1) => 0.0001 (0, 10) ~ (1, -1) => 0.0001 (0, 11) ~ (1, -1) => 0.0001 (0, 12) ~ (1, -1) => 0.0001 (0, 13) ~ (1, -1) => 0.0001 (0, 14) ~ (1, -1) => 0.0001 (0, 15) ~ (1, -1) => 0.0001 (0, 16) ~ (1, -1) => 0.0001 (0, 17) ~ (1, -1) => 0.0001 (0, 18) ~ (1, -1) => 0.0001 (0, 19) ~ (1, -1) => 0.0001 (0, 20) ~ (1, -1) => 0.0001 (0, 21) ~ (1, -1) => 0.0001 (0, 22) ~ (1, -1) => 0.0001 (0, 23) ~ (1, -1) => 0.0001 (0, 24) ~ (1, -1) => 0.0001 (0, 25) ~ (1, -1) => 0.0001 (0, 26) ~ (1, -1) => 0.0001 (0, 27) ~ (1, -1) => 0.0001 (0, 28) ~ (1, -1) => 0.0001 (0, 29) ~ (1, -1) => 0.0001 (0, 30) ~ (1, -1) => 0.0001 (0, 31) ~ (1, -1) => 0.0001 (0, 32) ~ (1, -1) => 0.0001 (0, 33) ~ (1, -1) => 0.0001 (0, 34) ~ (1, -1) => 0.0001 (0, 35) ~ (1, -1) => 0.0001 (0, 36) ~ (1, -1) => 0.0001 (0, 37) ~ (1, -1) => 0.0001 (0, 38) ~ (1, -1) => 0.0001 (0, 39) ~ (1, -1) => 0.0001 (0, 40) ~ (1, -1) => 0.0001 (0, 41) ~ (1, -1) => 0.0001 (0, 42) ~ (1, -1) => 0.0001 (0, 43) ~ (1, -1) => 0.0001 (0, 44) ~ (1, -1) => 0.0001 (0, 45) ~ (1, -1) => 0.0001 (0, 46) ~ (1, -1) => 0.0001 (0, 47) ~ (1, -1) => 0.0001 (0, 48) ~ (1, -1) => 0.0001 (0, 49) ~ (1, -1) => 0.0001 (0, 50) ~ (1, -1) => 0.0001 (0, 51) ~ (1, -1) => 0.0001 (0, 52) ~ (1, -1) => 0.0001 (0, 53) ~ (1, -1) => 0.0001 (0, 54) ~ (1, -1) => 0.0001 (0, 55) ~ (1, -1) => 0.0001 (0, 56) ~ (1, -1) => 0.0001 (0, 57) ~ (1, -1) => 0.0001 (0, 58) ~ (1, -1) => 0.0001 (0, 59) ~ (1, -1) => 0.0001 (0, 60) ~ (1, -1) => 0.0001 (0, 61) ~ (1, -1) => 0.0001 (0, 62) ~ (1, -1) => 0.0001 (0, 63) ~ (1, -1) => 0.0001 (0, 64) ~ (1, -1) => 0.0001 (0, 65) ~ (1, -1) => 0.0001 (0, 66) ~ (1, -1) => 0.0001 (0, 67) ~ (1, -1) => 0.0001 (0, 68) ~ (1, -1) => 0.0001 (0, 69) ~ (1, -1) => 0.0001 (0, 70) ~ (1, -1) => 0.0001 (0, 71) ~ (1, -1) => 0.0001 (0, 72) ~ (1, -1) => 0.0001 (0, -1) ~ (1, 0) => 0.0001 (0, -1) ~ (1, 1) => 0.0001 (0, -1) ~ (1, 2) => 0.0001 (0, -1) ~ (1, 3) => 0.0001 (0, -1) ~ (1, 4) => 0.0001 (0, -1) ~ (1, 5) => 0.0001 (0, -1) ~ (1, 6) => 0.0001 (0, -1) ~ (1, 7) => 0.0001 (0, -1) ~ (1, 8) => 0.0001 (0, -1) ~ (1, 9) => 0.0001 (0, -1) ~ (1, 10) => 0.0001 (0, -1) ~ (1, 11) => 0.0001 (0, -1) ~ (1, 12) => 0.0001 (0, -1) ~ (1, 13) => 0.0001 (0, -1) ~ (1, 14) => 0.0001 (0, -1) ~ (1, 15) => 0.0001 (0, -1) ~ (1, 16) => 0.0001 (0, -1) ~ (1, 17) => 0.0001 (0, -1) ~ (1, 18) => 0.0001 (0, -1) ~ (1, 19) => 0.0001 (0, -1) ~ (1, 20) => 0.0001 (0, -1) ~ (1, 21) => 0.0001 (0, -1) ~ (1, 22) => 0.0001 (0, -1) ~ (1, 23) => 0.0001 (0, -1) ~ (1, 24) => 0.0001 (0, -1) ~ (1, 25) => 0.0001 (0, -1) ~ (1, 26) => 0.0001 (0, -1) ~ (1, 27) => 0.0001 (0, -1) ~ (1, 28) => 0.0001 (0, -1) ~ (1, 29) => 0.0001 (0, -1) ~ (1, 30) => 0.0001 (0, -1) ~ (1, 31) => 0.0001 (0, -1) ~ (1, 32) => 0.0001 (0, -1) ~ (1, 33) => 0.0001 (0, -1) ~ (1, 34) => 0.0001 (0, -1) ~ (1, 35) => 0.0001 (0, -1) ~ (1, 36) => 0.0001 (0, -1) ~ (1, 37) => 0.0001 (0, -1) ~ (1, 38) => 0.0001 (0, -1) ~ (1, 39) => 0.0001 (0, -1) ~ (1, 40) => 0.0001 (0, -1) ~ (1, 41) => 0.0001 (0, -1) ~ (1, 42) => 0.0001 (0, -1) ~ (1, 43) => 0.0001 (0, -1) ~ (1, 44) => 0.0001 (0, -1) ~ (1, 45) => 0.0001 (0, -1) ~ (1, 46) => 0.0001 (0, -1) ~ (1, 47) => 0.0001 (0, -1) ~ (1, 48) => 0.0001 (0, -1) ~ (1, 49) => 0.0001 (0, -1) ~ (1, 50) => 0.0001 (0, -1) ~ (1, 51) => 0.0001 (0, -1) ~ (1, 52) => 0.0001 (0, -1) ~ (1, 53) => 0.0001 (0, -1) ~ (1, 54) => 0.0001 (0, -1) ~ (1, 55) => 0.0001 (0, -1) ~ (1, 56) => 0.0001 (0, -1) ~ (1, 57) => 0.0001 (0, -1) ~ (1, 58) => 0.0001 (0, -1) ~ (1, 59) => 0.0001 (0, -1) ~ (1, 60) => 0.0001 (0, -1) ~ (1, 61) => 0.0001 (0, -1) ~ (1, 62) => 0.0001 (0, -1) ~ (1, 63) => 0.0001 (0, -1) ~ (1, 64) => 0.0001 (0, -1) ~ (1, 65) => 0.0001 (0, -1) ~ (1, 66) => 0.0001 (0, -1) ~ (1, 67) => 0.0001 (0, -1) ~ (1, 68) => 0.0001 (0, -1) ~ (1, 69) => 0.0001 (0, -1) ~ (1, 70) => 0.0001 (0, -1) ~ (1, 71) => 0.0001 (0, -1) ~ (1, 72) => 0.0001 ; Sparse posterior probability matrix for sequences 0 and 2 ; Format is: ; (0, position_1) ~ (2, position_2) => prob ; which means that (0, position_1) is aligned to (2, position_2) with probability prob. ; (0, position_1) ~ (2, -1) => prob ; means that (0, position_1) is aligned to a gap in 2 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (0, 0) ~ (2, 0) => 0.999724 (0, 1) ~ (2, 1) => 0.998259 (0, 2) ~ (2, 2) => 0.994262 (0, 3) ~ (2, 3) => 0.989699 (0, 4) ~ (2, 4) => 0.984788 (0, 5) ~ (2, 5) => 0.98371 (0, 6) ~ (2, 6) => 0.984832 (0, 7) ~ (2, 7) => 0.986823 (0, 8) ~ (2, 8) => 0.990154 (0, 9) ~ (2, 9) => 0.993648 (0, 10) ~ (2, 10) => 0.992968 (0, 11) ~ (2, 11) => 0.97876 (0, 12) ~ (2, 12) => 0.921718 (0, 13) ~ (2, 13) => 0.887071 (0, 14) ~ (2, 14) => 0.871222 (0, 15) ~ (2, 12) => 0.0582702 (0, 15) ~ (2, 15) => 0.849592 (0, 15) ~ (2, 18) => 0.0100661 (0, 16) ~ (2, 13) => 0.0887852 (0, 16) ~ (2, 16) => 0.823034 (0, 17) ~ (2, 14) => 0.101264 (0, 17) ~ (2, 17) => 0.772626 (0, 17) ~ (2, 20) => 0.0101951 (0, 18) ~ (2, 15) => 0.111043 (0, 18) ~ (2, 17) => 0.0266189 (0, 18) ~ (2, 18) => 0.634374 (0, 18) ~ (2, 20) => 0.0130161 (0, 19) ~ (2, 15) => 0.0101311 (0, 19) ~ (2, 16) => 0.130759 (0, 19) ~ (2, 18) => 0.0390973 (0, 19) ~ (2, 19) => 0.511963 (0, 19) ~ (2, 21) => 0.014438 (0, 19) ~ (2, 22) => 0.0108856 (0, 20) ~ (2, 16) => 0.0118631 (0, 20) ~ (2, 17) => 0.146939 (0, 20) ~ (2, 18) => 0.0396141 (0, 20) ~ (2, 19) => 0.0482135 (0, 20) ~ (2, 20) => 0.410275 (0, 20) ~ (2, 22) => 0.0168449 (0, 20) ~ (2, 23) => 0.0104926 (0, 21) ~ (2, 17) => 0.0164278 (0, 21) ~ (2, 18) => 0.217703 (0, 21) ~ (2, 19) => 0.0659514 (0, 21) ~ (2, 20) => 0.0485805 (0, 21) ~ (2, 21) => 0.360963 (0, 21) ~ (2, 23) => 0.0107928 (0, 22) ~ (2, 18) => 0.0175471 (0, 22) ~ (2, 19) => 0.292626 (0, 22) ~ (2, 20) => 0.090073 (0, 22) ~ (2, 21) => 0.0254846 (0, 22) ~ (2, 22) => 0.338077 (0, 23) ~ (2, 19) => 0.0151479 (0, 23) ~ (2, 20) => 0.351957 (0, 23) ~ (2, 21) => 0.127763 (0, 23) ~ (2, 22) => 0.0214119 (0, 23) ~ (2, 23) => 0.278308 (0, 24) ~ (2, 21) => 0.35012 (0, 24) ~ (2, 22) => 0.184091 (0, 24) ~ (2, 23) => 0.0102155 (0, 24) ~ (2, 24) => 0.230821 (0, 25) ~ (2, 20) => 0.0163298 (0, 25) ~ (2, 22) => 0.223097 (0, 25) ~ (2, 23) => 0.381562 (0, 25) ~ (2, 25) => 0.159674 (0, 26) ~ (2, 21) => 0.0275944 (0, 26) ~ (2, 22) => 0.0131233 (0, 26) ~ (2, 23) => 0.0808135 (0, 26) ~ (2, 24) => 0.560693 (0, 26) ~ (2, 25) => 0.0229938 (0, 26) ~ (2, 26) => 0.0856582 (0, 26) ~ (2, 27) => 0.0132148 (0, 27) ~ (2, 22) => 0.0282464 (0, 27) ~ (2, 23) => 0.0326558 (0, 27) ~ (2, 24) => 0.0448551 (0, 27) ~ (2, 25) => 0.621584 (0, 27) ~ (2, 26) => 0.0519631 (0, 27) ~ (2, 27) => 0.0247191 (0, 28) ~ (2, 23) => 0.024229 (0, 28) ~ (2, 24) => 0.0391592 (0, 28) ~ (2, 25) => 0.0415402 (0, 28) ~ (2, 26) => 0.674947 (0, 28) ~ (2, 27) => 0.0693055 (0, 28) ~ (2, 28) => 0.0241231 (0, 29) ~ (2, 24) => 0.0185494 (0, 29) ~ (2, 26) => 0.0432005 (0, 29) ~ (2, 27) => 0.773768 (0, 29) ~ (2, 28) => 0.0661617 (0, 29) ~ (2, 29) => 0.0184992 (0, 30) ~ (2, 27) => 0.0597814 (0, 30) ~ (2, 28) => 0.79759 (0, 30) ~ (2, 29) => 0.0537858 (0, 30) ~ (2, 30) => 0.0134248 (0, 31) ~ (2, 28) => 0.062305 (0, 31) ~ (2, 29) => 0.788477 (0, 31) ~ (2, 30) => 0.0418489 (0, 31) ~ (2, 32) => 0.0152908 (0, 32) ~ (2, 29) => 0.0799714 (0, 32) ~ (2, 30) => 0.756954 (0, 32) ~ (2, 33) => 0.017271 (0, 33) ~ (2, 30) => 0.0917165 (0, 33) ~ (2, 31) => 0.634551 (0, 33) ~ (2, 34) => 0.0191927 (0, 34) ~ (2, 31) => 0.175789 (0, 34) ~ (2, 32) => 0.400881 (0, 34) ~ (2, 33) => 0.0207365 (0, 34) ~ (2, 35) => 0.0223507 (0, 35) ~ (2, 30) => 0.0147897 (0, 35) ~ (2, 32) => 0.229849 (0, 35) ~ (2, 33) => 0.313607 (0, 35) ~ (2, 34) => 0.0222486 (0, 35) ~ (2, 36) => 0.020426 (0, 36) ~ (2, 31) => 0.0205284 (0, 36) ~ (2, 32) => 0.071508 (0, 36) ~ (2, 33) => 0.204588 (0, 36) ~ (2, 34) => 0.245642 (0, 36) ~ (2, 35) => 0.023337 (0, 36) ~ (2, 37) => 0.0109347 (0, 37) ~ (2, 30) => 0.0116018 (0, 37) ~ (2, 32) => 0.0423532 (0, 37) ~ (2, 33) => 0.110317 (0, 37) ~ (2, 34) => 0.172453 (0, 37) ~ (2, 35) => 0.161916 (0, 37) ~ (2, 36) => 0.0341586 (0, 38) ~ (2, 31) => 0.0235705 (0, 38) ~ (2, 33) => 0.051835 (0, 38) ~ (2, 34) => 0.140796 (0, 38) ~ (2, 35) => 0.128513 (0, 38) ~ (2, 36) => 0.138184 (0, 38) ~ (2, 37) => 0.0419751 (0, 39) ~ (2, 32) => 0.0284375 (0, 39) ~ (2, 34) => 0.0605162 (0, 39) ~ (2, 35) => 0.177165 (0, 39) ~ (2, 36) => 0.056401 (0, 39) ~ (2, 37) => 0.133565 (0, 39) ~ (2, 38) => 0.0645766 (0, 39) ~ (2, 40) => 0.0138348 (0, 40) ~ (2, 31) => 0.0398725 (0, 40) ~ (2, 33) => 0.0382519 (0, 40) ~ (2, 35) => 0.0703581 (0, 40) ~ (2, 36) => 0.188482 (0, 40) ~ (2, 37) => 0.0221293 (0, 40) ~ (2, 38) => 0.140343 (0, 40) ~ (2, 39) => 0.0662712 (0, 40) ~ (2, 41) => 0.0153682 (0, 41) ~ (2, 32) => 0.0639644 (0, 41) ~ (2, 34) => 0.0479564 (0, 41) ~ (2, 36) => 0.0646349 (0, 41) ~ (2, 37) => 0.215527 (0, 41) ~ (2, 39) => 0.128938 (0, 41) ~ (2, 40) => 0.076872 (0, 41) ~ (2, 42) => 0.0144392 (0, 42) ~ (2, 32) => 0.0304373 (0, 42) ~ (2, 33) => 0.059531 (0, 42) ~ (2, 35) => 0.0595085 (0, 42) ~ (2, 37) => 0.0261667 (0, 42) ~ (2, 38) => 0.250169 (0, 42) ~ (2, 40) => 0.0911969 (0, 42) ~ (2, 41) => 0.0914186 (0, 42) ~ (2, 43) => 0.0136913 (0, 43) ~ (2, 33) => 0.0837669 (0, 43) ~ (2, 34) => 0.0562082 (0, 43) ~ (2, 36) => 0.0614359 (0, 43) ~ (2, 38) => 0.012928 (0, 43) ~ (2, 39) => 0.253133 (0, 43) ~ (2, 40) => 0.0173352 (0, 43) ~ (2, 41) => 0.0589634 (0, 43) ~ (2, 42) => 0.0964243 (0, 43) ~ (2, 44) => 0.0126652 (0, 44) ~ (2, 34) => 0.132966 (0, 44) ~ (2, 35) => 0.0482587 (0, 44) ~ (2, 37) => 0.0630964 (0, 44) ~ (2, 40) => 0.26258 (0, 44) ~ (2, 41) => 0.0226665 (0, 44) ~ (2, 42) => 0.0471306 (0, 44) ~ (2, 43) => 0.0955452 (0, 44) ~ (2, 45) => 0.0107377 (0, 45) ~ (2, 31) => 0.017201 (0, 45) ~ (2, 35) => 0.196908 (0, 45) ~ (2, 36) => 0.0319099 (0, 45) ~ (2, 38) => 0.07081 (0, 45) ~ (2, 41) => 0.271162 (0, 45) ~ (2, 42) => 0.0205864 (0, 45) ~ (2, 43) => 0.0353805 (0, 45) ~ (2, 44) => 0.0941144 (0, 46) ~ (2, 32) => 0.0253401 (0, 46) ~ (2, 36) => 0.241181 (0, 46) ~ (2, 37) => 0.031351 (0, 46) ~ (2, 39) => 0.0664009 (0, 46) ~ (2, 42) => 0.260711 (0, 46) ~ (2, 43) => 0.0179568 (0, 46) ~ (2, 44) => 0.0215948 (0, 46) ~ (2, 45) => 0.0931938 (0, 47) ~ (2, 33) => 0.0275964 (0, 47) ~ (2, 37) => 0.246739 (0, 47) ~ (2, 38) => 0.029932 (0, 47) ~ (2, 39) => 0.0204301 (0, 47) ~ (2, 40) => 0.0498507 (0, 47) ~ (2, 43) => 0.251047 (0, 47) ~ (2, 44) => 0.0135477 (0, 47) ~ (2, 46) => 0.0926613 (0, 48) ~ (2, 34) => 0.0334336 (0, 48) ~ (2, 37) => 0.0116868 (0, 48) ~ (2, 38) => 0.193955 (0, 48) ~ (2, 39) => 0.0456215 (0, 48) ~ (2, 40) => 0.0421049 (0, 48) ~ (2, 41) => 0.0410816 (0, 48) ~ (2, 42) => 0.0123284 (0, 48) ~ (2, 44) => 0.254717 (0, 48) ~ (2, 45) => 0.0123801 (0, 48) ~ (2, 47) => 0.0667051 (0, 49) ~ (2, 35) => 0.0389983 (0, 49) ~ (2, 38) => 0.0422504 (0, 49) ~ (2, 39) => 0.177682 (0, 49) ~ (2, 40) => 0.0594786 (0, 49) ~ (2, 41) => 0.0511579 (0, 49) ~ (2, 42) => 0.0388787 (0, 49) ~ (2, 43) => 0.0135967 (0, 49) ~ (2, 45) => 0.252676 (0, 49) ~ (2, 48) => 0.0456863 (0, 50) ~ (2, 36) => 0.0415821 (0, 50) ~ (2, 39) => 0.050177 (0, 50) ~ (2, 40) => 0.181601 (0, 50) ~ (2, 41) => 0.0671565 (0, 50) ~ (2, 42) => 0.0472804 (0, 50) ~ (2, 43) => 0.0351595 (0, 50) ~ (2, 44) => 0.0129426 (0, 50) ~ (2, 46) => 0.248721 (0, 50) ~ (2, 49) => 0.0291422 (0, 51) ~ (2, 37) => 0.0420335 (0, 51) ~ (2, 40) => 0.0512515 (0, 51) ~ (2, 41) => 0.192155 (0, 51) ~ (2, 42) => 0.0946379 (0, 51) ~ (2, 43) => 0.0492776 (0, 51) ~ (2, 44) => 0.0356747 (0, 51) ~ (2, 45) => 0.0148672 (0, 51) ~ (2, 47) => 0.174671 (0, 51) ~ (2, 50) => 0.0178835 (0, 52) ~ (2, 38) => 0.0515219 (0, 52) ~ (2, 41) => 0.0516903 (0, 52) ~ (2, 42) => 0.189746 (0, 52) ~ (2, 43) => 0.124305 (0, 52) ~ (2, 44) => 0.0495705 (0, 52) ~ (2, 45) => 0.0354658 (0, 52) ~ (2, 46) => 0.0152973 (0, 52) ~ (2, 48) => 0.151707 (0, 53) ~ (2, 39) => 0.0545825 (0, 53) ~ (2, 42) => 0.0452449 (0, 53) ~ (2, 43) => 0.187371 (0, 53) ~ (2, 44) => 0.15197 (0, 53) ~ (2, 45) => 0.0487567 (0, 53) ~ (2, 46) => 0.0329965 (0, 53) ~ (2, 47) => 0.0290346 (0, 53) ~ (2, 49) => 0.133888 (0, 54) ~ (2, 40) => 0.0535747 (0, 54) ~ (2, 43) => 0.0385975 (0, 54) ~ (2, 44) => 0.184618 (0, 54) ~ (2, 45) => 0.18189 (0, 54) ~ (2, 46) => 0.0464012 (0, 54) ~ (2, 47) => 0.0365166 (0, 54) ~ (2, 48) => 0.023408 (0, 54) ~ (2, 50) => 0.1125 (0, 55) ~ (2, 41) => 0.0520236 (0, 55) ~ (2, 44) => 0.0314222 (0, 55) ~ (2, 45) => 0.182111 (0, 55) ~ (2, 46) => 0.211635 (0, 55) ~ (2, 47) => 0.0502179 (0, 55) ~ (2, 48) => 0.0192955 (0, 55) ~ (2, 49) => 0.0183962 (0, 55) ~ (2, 51) => 0.0807924 (0, 56) ~ (2, 42) => 0.054673 (0, 56) ~ (2, 45) => 0.0300687 (0, 56) ~ (2, 46) => 0.192478 (0, 56) ~ (2, 47) => 0.178491 (0, 56) ~ (2, 48) => 0.0411804 (0, 56) ~ (2, 49) => 0.0126608 (0, 56) ~ (2, 50) => 0.014626 (0, 56) ~ (2, 52) => 0.0444692 (0, 57) ~ (2, 43) => 0.0546273 (0, 57) ~ (2, 46) => 0.0107941 (0, 57) ~ (2, 47) => 0.330134 (0, 57) ~ (2, 48) => 0.143113 (0, 57) ~ (2, 49) => 0.0270833 (0, 57) ~ (2, 50) => 0.0108142 (0, 57) ~ (2, 53) => 0.0317131 (0, 58) ~ (2, 44) => 0.0521404 (0, 58) ~ (2, 48) => 0.462548 (0, 58) ~ (2, 49) => 0.102628 (0, 58) ~ (2, 50) => 0.0228717 (0, 58) ~ (2, 54) => 0.0236598 (0, 59) ~ (2, 45) => 0.0486479 (0, 59) ~ (2, 49) => 0.579688 (0, 59) ~ (2, 50) => 0.0901317 (0, 59) ~ (2, 55) => 0.0201023 (0, 60) ~ (2, 46) => 0.0474697 (0, 60) ~ (2, 50) => 0.645043 (0, 60) ~ (2, 51) => 0.0615694 (0, 60) ~ (2, 56) => 0.0147287 (0, 61) ~ (2, 47) => 0.0335597 (0, 61) ~ (2, 51) => 0.789701 (0, 61) ~ (2, 52) => 0.0265989 (0, 62) ~ (2, 48) => 0.0279606 (0, 62) ~ (2, 52) => 0.869536 (0, 62) ~ (2, 53) => 0.0204472 (0, 63) ~ (2, 49) => 0.0240568 (0, 63) ~ (2, 53) => 0.887267 (0, 63) ~ (2, 54) => 0.0216905 (0, 64) ~ (2, 50) => 0.0199529 (0, 64) ~ (2, 54) => 0.900811 (0, 64) ~ (2, 55) => 0.0230221 (0, 65) ~ (2, 51) => 0.0177709 (0, 65) ~ (2, 55) => 0.90596 (0, 65) ~ (2, 56) => 0.0223452 (0, 66) ~ (2, 52) => 0.0115729 (0, 66) ~ (2, 56) => 0.91626 (0, 66) ~ (2, 57) => 0.0194429 (0, 67) ~ (2, 56) => 0.010609 (0, 67) ~ (2, 57) => 0.932905 (0, 67) ~ (2, 58) => 0.0135614 (0, 68) ~ (2, 58) => 0.954925 (0, 69) ~ (2, 59) => 0.974332 (0, 70) ~ (2, 60) => 0.990845 (0, 71) ~ (2, 61) => 0.997531 (0, 72) ~ (2, 62) => 0.998506 ; gap posteriors (0, 0) ~ (2, -1) => 0.000275612 (0, 1) ~ (2, -1) => 0.00174129 (0, 2) ~ (2, -1) => 0.00573754 (0, 3) ~ (2, -1) => 0.010301 (0, 4) ~ (2, -1) => 0.0152116 (0, 5) ~ (2, -1) => 0.0162897 (0, 6) ~ (2, -1) => 0.015168 (0, 7) ~ (2, -1) => 0.0131771 (0, 8) ~ (2, -1) => 0.00984573 (0, 9) ~ (2, -1) => 0.00635201 (0, 10) ~ (2, -1) => 0.0070315 (0, 11) ~ (2, -1) => 0.0212397 (0, 12) ~ (2, -1) => 0.078282 (0, 13) ~ (2, -1) => 0.112929 (0, 14) ~ (2, -1) => 0.128778 (0, 15) ~ (2, -1) => 0.082072 (0, 16) ~ (2, -1) => 0.0881804 (0, 17) ~ (2, -1) => 0.115915 (0, 18) ~ (2, -1) => 0.214949 (0, 19) ~ (2, -1) => 0.282726 (0, 20) ~ (2, -1) => 0.315758 (0, 21) ~ (2, -1) => 0.279582 (0, 22) ~ (2, -1) => 0.236192 (0, 23) ~ (2, -1) => 0.205413 (0, 24) ~ (2, -1) => 0.224752 (0, 25) ~ (2, -1) => 0.219337 (0, 26) ~ (2, -1) => 0.195909 (0, 27) ~ (2, -1) => 0.195977 (0, 28) ~ (2, -1) => 0.126696 (0, 29) ~ (2, -1) => 0.0798208 (0, 30) ~ (2, -1) => 0.0754177 (0, 31) ~ (2, -1) => 0.0920783 (0, 32) ~ (2, -1) => 0.145803 (0, 33) ~ (2, -1) => 0.254539 (0, 34) ~ (2, -1) => 0.380242 (0, 35) ~ (2, -1) => 0.39908 (0, 36) ~ (2, -1) => 0.423462 (0, 37) ~ (2, -1) => 0.4672 (0, 38) ~ (2, -1) => 0.475126 (0, 39) ~ (2, -1) => 0.465504 (0, 40) ~ (2, -1) => 0.418923 (0, 41) ~ (2, -1) => 0.387668 (0, 42) ~ (2, -1) => 0.377881 (0, 43) ~ (2, -1) => 0.34714 (0, 44) ~ (2, -1) => 0.317019 (0, 45) ~ (2, -1) => 0.261928 (0, 46) ~ (2, -1) => 0.242271 (0, 47) ~ (2, -1) => 0.268196 (0, 48) ~ (2, -1) => 0.285986 (0, 49) ~ (2, -1) => 0.279595 (0, 50) ~ (2, -1) => 0.286238 (0, 51) ~ (2, -1) => 0.327548 (0, 52) ~ (2, -1) => 0.330696 (0, 53) ~ (2, -1) => 0.316156 (0, 54) ~ (2, -1) => 0.322494 (0, 55) ~ (2, -1) => 0.354106 (0, 56) ~ (2, -1) => 0.431354 (0, 57) ~ (2, -1) => 0.391721 (0, 58) ~ (2, -1) => 0.336152 (0, 59) ~ (2, -1) => 0.26143 (0, 60) ~ (2, -1) => 0.231189 (0, 61) ~ (2, -1) => 0.150141 (0, 62) ~ (2, -1) => 0.0820566 (0, 63) ~ (2, -1) => 0.066986 (0, 64) ~ (2, -1) => 0.0562138 (0, 65) ~ (2, -1) => 0.0539238 (0, 66) ~ (2, -1) => 0.0527242 (0, 67) ~ (2, -1) => 0.0429246 (0, 68) ~ (2, -1) => 0.0450748 (0, 69) ~ (2, -1) => 0.0256681 (0, 70) ~ (2, -1) => 0.00915456 (0, 71) ~ (2, -1) => 0.002469 (0, 72) ~ (2, -1) => 0.00149399 (0, -1) ~ (2, 0) => 0.000275612 (0, -1) ~ (2, 1) => 0.00174129 (0, -1) ~ (2, 2) => 0.00573754 (0, -1) ~ (2, 3) => 0.010301 (0, -1) ~ (2, 4) => 0.0152116 (0, -1) ~ (2, 5) => 0.0162897 (0, -1) ~ (2, 6) => 0.015168 (0, -1) ~ (2, 7) => 0.0131771 (0, -1) ~ (2, 8) => 0.00984573 (0, -1) ~ (2, 9) => 0.00635201 (0, -1) ~ (2, 10) => 0.0070315 (0, -1) ~ (2, 11) => 0.0212397 (0, -1) ~ (2, 12) => 0.0200118 (0, -1) ~ (2, 13) => 0.0241438 (0, -1) ~ (2, 14) => 0.0275133 (0, -1) ~ (2, 15) => 0.0292348 (0, -1) ~ (2, 16) => 0.0343431 (0, -1) ~ (2, 17) => 0.0373887 (0, -1) ~ (2, 18) => 0.0415987 (0, -1) ~ (2, 19) => 0.0660981 (0, -1) ~ (2, 20) => 0.0595737 (0, -1) ~ (2, 21) => 0.0936376 (0, -1) ~ (2, 22) => 0.164222 (0, -1) ~ (2, 23) => 0.170931 (0, -1) ~ (2, 24) => 0.105922 (0, -1) ~ (2, 25) => 0.154209 (0, -1) ~ (2, 26) => 0.144231 (0, -1) ~ (2, 27) => 0.0592109 (0, -1) ~ (2, 28) => 0.0498198 (0, -1) ~ (2, 29) => 0.0592668 (0, -1) ~ (2, 30) => 0.0696642 (0, -1) ~ (2, 31) => 0.0884868 (0, -1) ~ (2, 32) => 0.0919386 (0, -1) ~ (2, 33) => 0.0724985 (0, -1) ~ (2, 34) => 0.0685876 (0, -1) ~ (2, 35) => 0.0726866 (0, -1) ~ (2, 36) => 0.121605 (0, -1) ~ (2, 37) => 0.154795 (0, -1) ~ (2, 38) => 0.143514 (0, -1) ~ (2, 39) => 0.136763 (0, -1) ~ (2, 40) => 0.10032 (0, -1) ~ (2, 41) => 0.0851562 (0, -1) ~ (2, 42) => 0.0779182 (0, -1) ~ (2, 43) => 0.0834449 (0, -1) ~ (2, 44) => 0.0850222 (0, -1) ~ (2, 45) => 0.089206 (0, -1) ~ (2, 46) => 0.101546 (0, -1) ~ (2, 47) => 0.100671 (0, -1) ~ (2, 48) => 0.0851012 (0, -1) ~ (2, 49) => 0.0724566 (0, -1) ~ (2, 50) => 0.066177 (0, -1) ~ (2, 51) => 0.0501667 (0, -1) ~ (2, 52) => 0.0478234 (0, -1) ~ (2, 53) => 0.060573 (0, -1) ~ (2, 54) => 0.0538386 (0, -1) ~ (2, 55) => 0.0509156 (0, -1) ~ (2, 56) => 0.036057 (0, -1) ~ (2, 57) => 0.0476521 (0, -1) ~ (2, 58) => 0.0315134 (0, -1) ~ (2, 59) => 0.0256681 (0, -1) ~ (2, 60) => 0.00915456 (0, -1) ~ (2, 61) => 0.002469 (0, -1) ~ (2, 62) => 0.00149399 ; Sparse posterior probability matrix for sequences 0 and 3 ; Format is: ; (0, position_1) ~ (3, position_2) => prob ; which means that (0, position_1) is aligned to (3, position_2) with probability prob. ; (0, position_1) ~ (3, -1) => prob ; means that (0, position_1) is aligned to a gap in 3 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (0, 0) ~ (3, 0) => 0.999868 (0, 1) ~ (3, 1) => 0.999554 (0, 2) ~ (3, 2) => 0.999334 (0, 3) ~ (3, 3) => 0.999235 (0, 4) ~ (3, 4) => 0.999279 (0, 5) ~ (3, 5) => 0.999524 (0, 6) ~ (3, 6) => 0.999585 (0, 7) ~ (3, 7) => 0.999572 (0, 8) ~ (3, 8) => 0.999311 (0, 9) ~ (3, 9) => 0.998955 (0, 10) ~ (3, 10) => 0.99825 (0, 11) ~ (3, 11) => 0.997211 (0, 12) ~ (3, 12) => 0.996337 (0, 13) ~ (3, 13) => 0.99552 (0, 14) ~ (3, 14) => 0.993473 (0, 15) ~ (3, 15) => 0.988359 (0, 16) ~ (3, 16) => 0.976493 (0, 17) ~ (3, 17) => 0.928737 (0, 18) ~ (3, 17) => 0.0325857 (0, 18) ~ (3, 18) => 0.855379 (0, 18) ~ (3, 19) => 0.0148667 (0, 19) ~ (3, 17) => 0.0110468 (0, 19) ~ (3, 18) => 0.0543214 (0, 19) ~ (3, 19) => 0.721971 (0, 19) ~ (3, 20) => 0.0169913 (0, 20) ~ (3, 17) => 0.0143884 (0, 20) ~ (3, 18) => 0.047874 (0, 20) ~ (3, 19) => 0.13454 (0, 20) ~ (3, 20) => 0.690495 (0, 20) ~ (3, 21) => 0.0206943 (0, 21) ~ (3, 18) => 0.0172511 (0, 21) ~ (3, 19) => 0.0933079 (0, 21) ~ (3, 20) => 0.148898 (0, 21) ~ (3, 21) => 0.646272 (0, 21) ~ (3, 22) => 0.030991 (0, 22) ~ (3, 19) => 0.0201563 (0, 22) ~ (3, 20) => 0.107175 (0, 22) ~ (3, 21) => 0.167541 (0, 22) ~ (3, 22) => 0.604437 (0, 22) ~ (3, 23) => 0.0351532 (0, 23) ~ (3, 20) => 0.0189054 (0, 23) ~ (3, 21) => 0.118466 (0, 23) ~ (3, 22) => 0.192156 (0, 23) ~ (3, 23) => 0.594313 (0, 23) ~ (3, 24) => 0.027865 (0, 24) ~ (3, 21) => 0.0168377 (0, 24) ~ (3, 22) => 0.131108 (0, 24) ~ (3, 23) => 0.195914 (0, 24) ~ (3, 24) => 0.540339 (0, 24) ~ (3, 25) => 0.0282492 (0, 25) ~ (3, 23) => 0.137636 (0, 25) ~ (3, 24) => 0.264318 (0, 25) ~ (3, 25) => 0.209762 (0, 25) ~ (3, 26) => 0.0367611 (0, 26) ~ (3, 24) => 0.122203 (0, 26) ~ (3, 25) => 0.610714 (0, 26) ~ (3, 26) => 0.0458083 (0, 26) ~ (3, 27) => 0.0310703 (0, 27) ~ (3, 25) => 0.0343706 (0, 27) ~ (3, 26) => 0.868687 (0, 27) ~ (3, 27) => 0.0307455 (0, 27) ~ (3, 28) => 0.0212694 (0, 28) ~ (3, 26) => 0.0153008 (0, 28) ~ (3, 27) => 0.911727 (0, 28) ~ (3, 28) => 0.0305757 (0, 28) ~ (3, 29) => 0.0197958 (0, 29) ~ (3, 27) => 0.0154065 (0, 29) ~ (3, 28) => 0.923867 (0, 29) ~ (3, 29) => 0.0282678 (0, 29) ~ (3, 30) => 0.0180916 (0, 30) ~ (3, 28) => 0.0148131 (0, 30) ~ (3, 29) => 0.928523 (0, 30) ~ (3, 30) => 0.025473 (0, 30) ~ (3, 31) => 0.0151869 (0, 31) ~ (3, 29) => 0.0138116 (0, 31) ~ (3, 30) => 0.931348 (0, 31) ~ (3, 31) => 0.0204346 (0, 32) ~ (3, 30) => 0.0119587 (0, 32) ~ (3, 31) => 0.930356 (0, 32) ~ (3, 32) => 0.0112762 (0, 33) ~ (3, 32) => 0.913441 (0, 34) ~ (3, 33) => 0.886764 (0, 34) ~ (3, 35) => 0.0140674 (0, 35) ~ (3, 31) => 0.0101124 (0, 35) ~ (3, 34) => 0.860442 (0, 35) ~ (3, 36) => 0.0174668 (0, 36) ~ (3, 32) => 0.0147431 (0, 36) ~ (3, 35) => 0.757718 (0, 36) ~ (3, 37) => 0.017365 (0, 37) ~ (3, 32) => 0.0104763 (0, 37) ~ (3, 33) => 0.0191068 (0, 37) ~ (3, 35) => 0.0137239 (0, 37) ~ (3, 36) => 0.724875 (0, 37) ~ (3, 37) => 0.0101107 (0, 37) ~ (3, 38) => 0.0150061 (0, 38) ~ (3, 33) => 0.0167235 (0, 38) ~ (3, 34) => 0.0206122 (0, 38) ~ (3, 35) => 0.0170961 (0, 38) ~ (3, 36) => 0.0213794 (0, 38) ~ (3, 37) => 0.693712 (0, 39) ~ (3, 32) => 0.0187956 (0, 39) ~ (3, 34) => 0.022139 (0, 39) ~ (3, 35) => 0.0437584 (0, 39) ~ (3, 36) => 0.0153575 (0, 39) ~ (3, 37) => 0.0362792 (0, 39) ~ (3, 38) => 0.640753 (0, 40) ~ (3, 33) => 0.032433 (0, 40) ~ (3, 35) => 0.0639345 (0, 40) ~ (3, 36) => 0.0480517 (0, 40) ~ (3, 37) => 0.0171286 (0, 40) ~ (3, 38) => 0.0482781 (0, 40) ~ (3, 39) => 0.583542 (0, 41) ~ (3, 34) => 0.0464326 (0, 41) ~ (3, 36) => 0.0763925 (0, 41) ~ (3, 37) => 0.059493 (0, 41) ~ (3, 38) => 0.0148169 (0, 41) ~ (3, 39) => 0.0572248 (0, 41) ~ (3, 40) => 0.556763 (0, 42) ~ (3, 35) => 0.0563854 (0, 42) ~ (3, 37) => 0.0673534 (0, 42) ~ (3, 38) => 0.110734 (0, 42) ~ (3, 39) => 0.0229042 (0, 42) ~ (3, 40) => 0.0357203 (0, 42) ~ (3, 41) => 0.360305 (0, 43) ~ (3, 36) => 0.0588889 (0, 43) ~ (3, 38) => 0.0604748 (0, 43) ~ (3, 39) => 0.157368 (0, 43) ~ (3, 40) => 0.0370634 (0, 43) ~ (3, 41) => 0.0199648 (0, 43) ~ (3, 42) => 0.161219 (0, 44) ~ (3, 37) => 0.0629392 (0, 44) ~ (3, 39) => 0.0344668 (0, 44) ~ (3, 40) => 0.217001 (0, 44) ~ (3, 41) => 0.0728361 (0, 44) ~ (3, 42) => 0.0230368 (0, 44) ~ (3, 43) => 0.0615437 (0, 45) ~ (3, 38) => 0.065582 (0, 45) ~ (3, 40) => 0.0132727 (0, 45) ~ (3, 41) => 0.424589 (0, 45) ~ (3, 42) => 0.0956251 (0, 45) ~ (3, 44) => 0.0521909 (0, 46) ~ (3, 39) => 0.0683149 (0, 46) ~ (3, 41) => 0.0103489 (0, 46) ~ (3, 42) => 0.607405 (0, 46) ~ (3, 43) => 0.0793701 (0, 46) ~ (3, 45) => 0.0409314 (0, 47) ~ (3, 40) => 0.0592941 (0, 47) ~ (3, 43) => 0.768465 (0, 47) ~ (3, 44) => 0.059465 (0, 47) ~ (3, 46) => 0.0361746 (0, 48) ~ (3, 41) => 0.048867 (0, 48) ~ (3, 44) => 0.813133 (0, 48) ~ (3, 45) => 0.0197414 (0, 48) ~ (3, 47) => 0.0310433 (0, 49) ~ (3, 42) => 0.0437046 (0, 49) ~ (3, 45) => 0.874886 (0, 49) ~ (3, 48) => 0.0237211 (0, 50) ~ (3, 43) => 0.0375795 (0, 50) ~ (3, 46) => 0.900147 (0, 50) ~ (3, 49) => 0.0160224 (0, 51) ~ (3, 44) => 0.0216162 (0, 51) ~ (3, 47) => 0.9279 (0, 52) ~ (3, 45) => 0.0116906 (0, 52) ~ (3, 47) => 0.0112825 (0, 52) ~ (3, 48) => 0.946085 (0, 53) ~ (3, 48) => 0.0128174 (0, 53) ~ (3, 49) => 0.963231 (0, 54) ~ (3, 49) => 0.015348 (0, 54) ~ (3, 50) => 0.972575 (0, 55) ~ (3, 50) => 0.0172364 (0, 55) ~ (3, 51) => 0.973723 (0, 56) ~ (3, 51) => 0.0160667 (0, 56) ~ (3, 52) => 0.97698 (0, 57) ~ (3, 52) => 0.0177774 (0, 57) ~ (3, 53) => 0.976109 (0, 58) ~ (3, 53) => 0.0190756 (0, 58) ~ (3, 54) => 0.97426 (0, 59) ~ (3, 54) => 0.0182465 (0, 59) ~ (3, 55) => 0.977275 (0, 60) ~ (3, 56) => 0.98739 (0, 61) ~ (3, 57) => 0.993847 (0, 62) ~ (3, 58) => 0.996528 (0, 63) ~ (3, 59) => 0.997048 (0, 64) ~ (3, 60) => 0.997148 (0, 65) ~ (3, 61) => 0.998164 (0, 66) ~ (3, 62) => 0.998541 (0, 67) ~ (3, 63) => 0.997815 (0, 68) ~ (3, 64) => 0.997719 (0, 69) ~ (3, 65) => 0.998095 (0, 70) ~ (3, 66) => 0.998485 (0, 71) ~ (3, 67) => 0.998721 (0, 72) ~ (3, 68) => 0.998798 ; gap posteriors (0, 0) ~ (3, -1) => 0.000132024 (0, 1) ~ (3, -1) => 0.000445604 (0, 2) ~ (3, -1) => 0.00066638 (0, 3) ~ (3, -1) => 0.000764966 (0, 4) ~ (3, -1) => 0.000720799 (0, 5) ~ (3, -1) => 0.000475764 (0, 6) ~ (3, -1) => 0.000415146 (0, 7) ~ (3, -1) => 0.000428081 (0, 8) ~ (3, -1) => 0.00068903 (0, 9) ~ (3, -1) => 0.00104487 (0, 10) ~ (3, -1) => 0.00174987 (0, 11) ~ (3, -1) => 0.0027886 (0, 12) ~ (3, -1) => 0.0036633 (0, 13) ~ (3, -1) => 0.00448018 (0, 14) ~ (3, -1) => 0.00652683 (0, 15) ~ (3, -1) => 0.0116414 (0, 16) ~ (3, -1) => 0.0235071 (0, 17) ~ (3, -1) => 0.0712631 (0, 18) ~ (3, -1) => 0.0971687 (0, 19) ~ (3, -1) => 0.19567 (0, 20) ~ (3, -1) => 0.092008 (0, 21) ~ (3, -1) => 0.0632803 (0, 22) ~ (3, -1) => 0.0655384 (0, 23) ~ (3, -1) => 0.0482949 (0, 24) ~ (3, -1) => 0.0875526 (0, 25) ~ (3, -1) => 0.351522 (0, 26) ~ (3, -1) => 0.190204 (0, 27) ~ (3, -1) => 0.0449275 (0, 28) ~ (3, -1) => 0.0226006 (0, 29) ~ (3, -1) => 0.0143671 (0, 30) ~ (3, -1) => 0.0160044 (0, 31) ~ (3, -1) => 0.0344054 (0, 32) ~ (3, -1) => 0.0464087 (0, 33) ~ (3, -1) => 0.0865594 (0, 34) ~ (3, -1) => 0.0991687 (0, 35) ~ (3, -1) => 0.111979 (0, 36) ~ (3, -1) => 0.210174 (0, 37) ~ (3, -1) => 0.206701 (0, 38) ~ (3, -1) => 0.230477 (0, 39) ~ (3, -1) => 0.222917 (0, 40) ~ (3, -1) => 0.206632 (0, 41) ~ (3, -1) => 0.188877 (0, 42) ~ (3, -1) => 0.346598 (0, 43) ~ (3, -1) => 0.505021 (0, 44) ~ (3, -1) => 0.528176 (0, 45) ~ (3, -1) => 0.34874 (0, 46) ~ (3, -1) => 0.19363 (0, 47) ~ (3, -1) => 0.0766014 (0, 48) ~ (3, -1) => 0.0872151 (0, 49) ~ (3, -1) => 0.0576887 (0, 50) ~ (3, -1) => 0.0462513 (0, 51) ~ (3, -1) => 0.0504838 (0, 52) ~ (3, -1) => 0.0309421 (0, 53) ~ (3, -1) => 0.0239515 (0, 54) ~ (3, -1) => 0.0120769 (0, 55) ~ (3, -1) => 0.00904036 (0, 56) ~ (3, -1) => 0.00695324 (0, 57) ~ (3, -1) => 0.00611335 (0, 58) ~ (3, -1) => 0.00666398 (0, 59) ~ (3, -1) => 0.00447881 (0, 60) ~ (3, -1) => 0.01261 (0, 61) ~ (3, -1) => 0.00615257 (0, 62) ~ (3, -1) => 0.00347233 (0, 63) ~ (3, -1) => 0.0029515 (0, 64) ~ (3, -1) => 0.00285226 (0, 65) ~ (3, -1) => 0.00183558 (0, 66) ~ (3, -1) => 0.00145894 (0, 67) ~ (3, -1) => 0.00218451 (0, 68) ~ (3, -1) => 0.00228107 (0, 69) ~ (3, -1) => 0.0019049 (0, 70) ~ (3, -1) => 0.00151461 (0, 71) ~ (3, -1) => 0.00127912 (0, 72) ~ (3, -1) => 0.00120163 (0, -1) ~ (3, 0) => 0.000132024 (0, -1) ~ (3, 1) => 0.000445604 (0, -1) ~ (3, 2) => 0.00066638 (0, -1) ~ (3, 3) => 0.000764966 (0, -1) ~ (3, 4) => 0.000720799 (0, -1) ~ (3, 5) => 0.000475764 (0, -1) ~ (3, 6) => 0.000415146 (0, -1) ~ (3, 7) => 0.000428081 (0, -1) ~ (3, 8) => 0.00068903 (0, -1) ~ (3, 9) => 0.00104487 (0, -1) ~ (3, 10) => 0.00174987 (0, -1) ~ (3, 11) => 0.0027886 (0, -1) ~ (3, 12) => 0.0036633 (0, -1) ~ (3, 13) => 0.00448018 (0, -1) ~ (3, 14) => 0.00652683 (0, -1) ~ (3, 15) => 0.0116414 (0, -1) ~ (3, 16) => 0.0235071 (0, -1) ~ (3, 17) => 0.0132422 (0, -1) ~ (3, 18) => 0.0251746 (0, -1) ~ (3, 19) => 0.0151578 (0, -1) ~ (3, 20) => 0.0175357 (0, -1) ~ (3, 21) => 0.0301902 (0, -1) ~ (3, 22) => 0.0413084 (0, -1) ~ (3, 23) => 0.0369834 (0, -1) ~ (3, 24) => 0.0452749 (0, -1) ~ (3, 25) => 0.116903 (0, -1) ~ (3, 26) => 0.0334428 (0, -1) ~ (3, 27) => 0.0110505 (0, -1) ~ (3, 28) => 0.00947493 (0, -1) ~ (3, 29) => 0.00960221 (0, -1) ~ (3, 30) => 0.0131282 (0, -1) ~ (3, 31) => 0.0239097 (0, -1) ~ (3, 32) => 0.0312681 (0, -1) ~ (3, 33) => 0.0449728 (0, -1) ~ (3, 34) => 0.050374 (0, -1) ~ (3, 35) => 0.0333168 (0, -1) ~ (3, 36) => 0.0375886 (0, -1) ~ (3, 37) => 0.0356192 (0, -1) ~ (3, 38) => 0.0443555 (0, -1) ~ (3, 39) => 0.0761793 (0, -1) ~ (3, 40) => 0.0808852 (0, -1) ~ (3, 41) => 0.0630895 (0, -1) ~ (3, 42) => 0.0690095 (0, -1) ~ (3, 43) => 0.0530418 (0, -1) ~ (3, 44) => 0.0535947 (0, -1) ~ (3, 45) => 0.0527511 (0, -1) ~ (3, 46) => 0.0636786 (0, -1) ~ (3, 47) => 0.0297743 (0, -1) ~ (3, 48) => 0.0173768 (0, -1) ~ (3, 49) => 0.00539852 (0, -1) ~ (3, 50) => 0.0101885 (0, -1) ~ (3, 51) => 0.0102101 (0, -1) ~ (3, 52) => 0.00524251 (0, -1) ~ (3, 53) => 0.00481516 (0, -1) ~ (3, 54) => 0.00749309 (0, -1) ~ (3, 55) => 0.0227253 (0, -1) ~ (3, 56) => 0.01261 (0, -1) ~ (3, 57) => 0.00615257 (0, -1) ~ (3, 58) => 0.00347233 (0, -1) ~ (3, 59) => 0.0029515 (0, -1) ~ (3, 60) => 0.00285226 (0, -1) ~ (3, 61) => 0.00183558 (0, -1) ~ (3, 62) => 0.00145894 (0, -1) ~ (3, 63) => 0.00218451 (0, -1) ~ (3, 64) => 0.00228107 (0, -1) ~ (3, 65) => 0.0019049 (0, -1) ~ (3, 66) => 0.00151461 (0, -1) ~ (3, 67) => 0.00127912 (0, -1) ~ (3, 68) => 0.00120163 ; Sparse posterior probability matrix for sequences 0 and 4 ; Format is: ; (0, position_1) ~ (4, position_2) => prob ; which means that (0, position_1) is aligned to (4, position_2) with probability prob. ; (0, position_1) ~ (4, -1) => prob ; means that (0, position_1) is aligned to a gap in 4 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (0, 0) ~ (4, 0) => 0.999514 (0, 1) ~ (4, 1) => 0.998516 (0, 2) ~ (4, 2) => 0.997281 (0, 3) ~ (4, 3) => 0.995841 (0, 4) ~ (4, 4) => 0.994201 (0, 5) ~ (4, 5) => 0.993769 (0, 6) ~ (4, 6) => 0.993297 (0, 7) ~ (4, 7) => 0.992672 (0, 8) ~ (4, 8) => 0.992009 (0, 9) ~ (4, 9) => 0.990084 (0, 10) ~ (4, 10) => 0.985447 (0, 11) ~ (4, 11) => 0.98106 (0, 12) ~ (4, 12) => 0.975757 (0, 13) ~ (4, 13) => 0.958052 (0, 14) ~ (4, 14) => 0.93861 (0, 14) ~ (4, 15) => 0.0147639 (0, 15) ~ (4, 14) => 0.0126409 (0, 15) ~ (4, 15) => 0.912625 (0, 15) ~ (4, 16) => 0.0257896 (0, 16) ~ (4, 15) => 0.0185846 (0, 16) ~ (4, 16) => 0.894391 (0, 16) ~ (4, 17) => 0.0308256 (0, 17) ~ (4, 16) => 0.0242979 (0, 17) ~ (4, 17) => 0.857031 (0, 17) ~ (4, 18) => 0.0570543 (0, 18) ~ (4, 17) => 0.0281106 (0, 18) ~ (4, 18) => 0.791574 (0, 18) ~ (4, 19) => 0.100693 (0, 19) ~ (4, 18) => 0.0298682 (0, 19) ~ (4, 19) => 0.728809 (0, 19) ~ (4, 20) => 0.145172 (0, 19) ~ (4, 21) => 0.0101754 (0, 20) ~ (4, 17) => 0.0109799 (0, 20) ~ (4, 19) => 0.0332834 (0, 20) ~ (4, 20) => 0.696943 (0, 20) ~ (4, 21) => 0.166937 (0, 21) ~ (4, 18) => 0.0174621 (0, 21) ~ (4, 20) => 0.0345769 (0, 21) ~ (4, 21) => 0.618242 (0, 21) ~ (4, 22) => 0.235162 (0, 22) ~ (4, 19) => 0.0239593 (0, 22) ~ (4, 20) => 0.0101096 (0, 22) ~ (4, 21) => 0.0329467 (0, 22) ~ (4, 22) => 0.588253 (0, 22) ~ (4, 23) => 0.26687 (0, 23) ~ (4, 18) => 0.0128343 (0, 23) ~ (4, 20) => 0.0289404 (0, 23) ~ (4, 22) => 0.0314561 (0, 23) ~ (4, 23) => 0.559074 (0, 23) ~ (4, 24) => 0.298491 (0, 24) ~ (4, 19) => 0.0182627 (0, 24) ~ (4, 21) => 0.0336418 (0, 24) ~ (4, 22) => 0.0110812 (0, 24) ~ (4, 23) => 0.03092 (0, 24) ~ (4, 24) => 0.541415 (0, 24) ~ (4, 25) => 0.315487 (0, 25) ~ (4, 20) => 0.0202519 (0, 25) ~ (4, 22) => 0.0331185 (0, 25) ~ (4, 23) => 0.0107767 (0, 25) ~ (4, 24) => 0.0274971 (0, 25) ~ (4, 25) => 0.53752 (0, 25) ~ (4, 26) => 0.318873 (0, 26) ~ (4, 21) => 0.0213842 (0, 26) ~ (4, 23) => 0.0324301 (0, 26) ~ (4, 25) => 0.0268448 (0, 26) ~ (4, 26) => 0.536632 (0, 26) ~ (4, 27) => 0.324565 (0, 27) ~ (4, 21) => 0.0104048 (0, 27) ~ (4, 22) => 0.0203407 (0, 27) ~ (4, 24) => 0.0295516 (0, 27) ~ (4, 26) => 0.0226638 (0, 27) ~ (4, 27) => 0.520972 (0, 27) ~ (4, 28) => 0.343537 (0, 27) ~ (4, 29) => 0.0114994 (0, 28) ~ (4, 22) => 0.0129635 (0, 28) ~ (4, 23) => 0.0188873 (0, 28) ~ (4, 25) => 0.0278172 (0, 28) ~ (4, 27) => 0.01552 (0, 28) ~ (4, 28) => 0.509783 (0, 28) ~ (4, 29) => 0.368894 (0, 28) ~ (4, 30) => 0.013488 (0, 29) ~ (4, 23) => 0.0142972 (0, 29) ~ (4, 24) => 0.0162591 (0, 29) ~ (4, 26) => 0.0239518 (0, 29) ~ (4, 28) => 0.0119455 (0, 29) ~ (4, 29) => 0.512726 (0, 29) ~ (4, 30) => 0.379499 (0, 29) ~ (4, 31) => 0.0141546 (0, 30) ~ (4, 24) => 0.0152735 (0, 30) ~ (4, 25) => 0.0153808 (0, 30) ~ (4, 27) => 0.0193743 (0, 30) ~ (4, 29) => 0.0113134 (0, 30) ~ (4, 30) => 0.512265 (0, 30) ~ (4, 31) => 0.386834 (0, 30) ~ (4, 32) => 0.0144186 (0, 31) ~ (4, 25) => 0.0173578 (0, 31) ~ (4, 26) => 0.0140679 (0, 31) ~ (4, 28) => 0.0179109 (0, 31) ~ (4, 31) => 0.508472 (0, 31) ~ (4, 32) => 0.391715 (0, 31) ~ (4, 33) => 0.0138223 (0, 32) ~ (4, 26) => 0.0184863 (0, 32) ~ (4, 27) => 0.0120909 (0, 32) ~ (4, 29) => 0.0183136 (0, 32) ~ (4, 32) => 0.502458 (0, 32) ~ (4, 33) => 0.394539 (0, 32) ~ (4, 34) => 0.0129449 (0, 33) ~ (4, 27) => 0.0195599 (0, 33) ~ (4, 28) => 0.0118155 (0, 33) ~ (4, 30) => 0.0179152 (0, 33) ~ (4, 33) => 0.490753 (0, 33) ~ (4, 34) => 0.395656 (0, 33) ~ (4, 35) => 0.0148373 (0, 34) ~ (4, 28) => 0.0190948 (0, 34) ~ (4, 29) => 0.0103769 (0, 34) ~ (4, 31) => 0.0176846 (0, 34) ~ (4, 34) => 0.476603 (0, 34) ~ (4, 35) => 0.391058 (0, 34) ~ (4, 36) => 0.0153786 (0, 35) ~ (4, 29) => 0.017431 (0, 35) ~ (4, 30) => 0.0101261 (0, 35) ~ (4, 31) => 0.010376 (0, 35) ~ (4, 32) => 0.0197472 (0, 35) ~ (4, 33) => 0.0131514 (0, 35) ~ (4, 34) => 0.0105301 (0, 35) ~ (4, 35) => 0.438519 (0, 35) ~ (4, 36) => 0.358745 (0, 35) ~ (4, 37) => 0.0167357 (0, 36) ~ (4, 30) => 0.0152305 (0, 36) ~ (4, 31) => 0.010468 (0, 36) ~ (4, 32) => 0.0126431 (0, 36) ~ (4, 33) => 0.0209446 (0, 36) ~ (4, 34) => 0.0195897 (0, 36) ~ (4, 35) => 0.017062 (0, 36) ~ (4, 36) => 0.417176 (0, 36) ~ (4, 37) => 0.332704 (0, 36) ~ (4, 38) => 0.0170539 (0, 37) ~ (4, 31) => 0.0117718 (0, 37) ~ (4, 32) => 0.0112397 (0, 37) ~ (4, 33) => 0.0166754 (0, 37) ~ (4, 34) => 0.0198598 (0, 37) ~ (4, 35) => 0.0477904 (0, 37) ~ (4, 36) => 0.0281445 (0, 37) ~ (4, 37) => 0.393131 (0, 37) ~ (4, 38) => 0.305903 (0, 37) ~ (4, 39) => 0.0168858 (0, 38) ~ (4, 33) => 0.0124444 (0, 38) ~ (4, 34) => 0.0182892 (0, 38) ~ (4, 35) => 0.023384 (0, 38) ~ (4, 36) => 0.0950097 (0, 38) ~ (4, 37) => 0.0361916 (0, 38) ~ (4, 38) => 0.367469 (0, 38) ~ (4, 39) => 0.278029 (0, 38) ~ (4, 40) => 0.0157316 (0, 39) ~ (4, 34) => 0.0124835 (0, 39) ~ (4, 35) => 0.01799 (0, 39) ~ (4, 36) => 0.0214553 (0, 39) ~ (4, 37) => 0.141615 (0, 39) ~ (4, 38) => 0.0441001 (0, 39) ~ (4, 39) => 0.342546 (0, 39) ~ (4, 40) => 0.245489 (0, 39) ~ (4, 41) => 0.0134022 (0, 40) ~ (4, 35) => 0.0115237 (0, 40) ~ (4, 36) => 0.0147978 (0, 40) ~ (4, 37) => 0.0191242 (0, 40) ~ (4, 38) => 0.194733 (0, 40) ~ (4, 39) => 0.0516583 (0, 40) ~ (4, 40) => 0.312011 (0, 40) ~ (4, 41) => 0.211869 (0, 40) ~ (4, 42) => 0.0108932 (0, 41) ~ (4, 37) => 0.0114752 (0, 41) ~ (4, 38) => 0.0164653 (0, 41) ~ (4, 39) => 0.252944 (0, 41) ~ (4, 40) => 0.0575781 (0, 41) ~ (4, 41) => 0.280072 (0, 41) ~ (4, 42) => 0.180025 (0, 42) ~ (4, 39) => 0.0135825 (0, 42) ~ (4, 40) => 0.325667 (0, 42) ~ (4, 41) => 0.0643341 (0, 42) ~ (4, 42) => 0.256768 (0, 42) ~ (4, 43) => 0.154878 (0, 43) ~ (4, 40) => 0.0123884 (0, 43) ~ (4, 41) => 0.394095 (0, 43) ~ (4, 42) => 0.0690658 (0, 43) ~ (4, 43) => 0.232745 (0, 43) ~ (4, 44) => 0.130116 (0, 44) ~ (4, 41) => 0.0106287 (0, 44) ~ (4, 42) => 0.452426 (0, 44) ~ (4, 43) => 0.0709358 (0, 44) ~ (4, 44) => 0.206051 (0, 44) ~ (4, 45) => 0.0984956 (0, 45) ~ (4, 43) => 0.507375 (0, 45) ~ (4, 44) => 0.0718677 (0, 45) ~ (4, 45) => 0.172093 (0, 45) ~ (4, 46) => 0.0927931 (0, 46) ~ (4, 44) => 0.564698 (0, 46) ~ (4, 45) => 0.0694848 (0, 46) ~ (4, 46) => 0.166909 (0, 46) ~ (4, 47) => 0.0913847 (0, 47) ~ (4, 45) => 0.637546 (0, 47) ~ (4, 46) => 0.0648203 (0, 47) ~ (4, 47) => 0.153889 (0, 47) ~ (4, 48) => 0.0820016 (0, 48) ~ (4, 46) => 0.654355 (0, 48) ~ (4, 47) => 0.0454965 (0, 48) ~ (4, 48) => 0.0825864 (0, 48) ~ (4, 49) => 0.0714093 (0, 49) ~ (4, 47) => 0.689994 (0, 49) ~ (4, 48) => 0.0132113 (0, 49) ~ (4, 49) => 0.0595504 (0, 49) ~ (4, 50) => 0.0713961 (0, 50) ~ (4, 48) => 0.806874 (0, 50) ~ (4, 50) => 0.0355284 (0, 50) ~ (4, 51) => 0.0704155 (0, 51) ~ (4, 49) => 0.849007 (0, 51) ~ (4, 51) => 0.0251387 (0, 51) ~ (4, 52) => 0.0660731 (0, 52) ~ (4, 50) => 0.876333 (0, 52) ~ (4, 52) => 0.0229833 (0, 52) ~ (4, 53) => 0.0447138 (0, 53) ~ (4, 51) => 0.89111 (0, 53) ~ (4, 54) => 0.0355685 (0, 54) ~ (4, 52) => 0.898423 (0, 54) ~ (4, 55) => 0.0284183 (0, 55) ~ (4, 53) => 0.934729 (0, 55) ~ (4, 56) => 0.0228447 (0, 56) ~ (4, 54) => 0.949109 (0, 56) ~ (4, 57) => 0.0111105 (0, 57) ~ (4, 55) => 0.959562 (0, 58) ~ (4, 56) => 0.965689 (0, 59) ~ (4, 57) => 0.978606 (0, 60) ~ (4, 58) => 0.985098 (0, 61) ~ (4, 59) => 0.988442 (0, 62) ~ (4, 60) => 0.990037 (0, 63) ~ (4, 61) => 0.990973 (0, 64) ~ (4, 62) => 0.994206 (0, 65) ~ (4, 63) => 0.996555 (0, 66) ~ (4, 64) => 0.997557 (0, 67) ~ (4, 65) => 0.997882 (0, 68) ~ (4, 66) => 0.99823 (0, 69) ~ (4, 67) => 0.998604 (0, 70) ~ (4, 68) => 0.999028 (0, 71) ~ (4, 69) => 0.999454 (0, 72) ~ (4, 70) => 0.999603 ; gap posteriors (0, 0) ~ (4, -1) => 0.000485778 (0, 1) ~ (4, -1) => 0.00148392 (0, 2) ~ (4, -1) => 0.00271869 (0, 3) ~ (4, -1) => 0.00415862 (0, 4) ~ (4, -1) => 0.0057987 (0, 5) ~ (4, -1) => 0.00623131 (0, 6) ~ (4, -1) => 0.00670302 (0, 7) ~ (4, -1) => 0.00732833 (0, 8) ~ (4, -1) => 0.00799137 (0, 9) ~ (4, -1) => 0.00991583 (0, 10) ~ (4, -1) => 0.0145533 (0, 11) ~ (4, -1) => 0.0189404 (0, 12) ~ (4, -1) => 0.0242434 (0, 13) ~ (4, -1) => 0.0419483 (0, 14) ~ (4, -1) => 0.0466256 (0, 15) ~ (4, -1) => 0.0489447 (0, 16) ~ (4, -1) => 0.0561989 (0, 17) ~ (4, -1) => 0.0616167 (0, 18) ~ (4, -1) => 0.0796226 (0, 19) ~ (4, -1) => 0.0859755 (0, 20) ~ (4, -1) => 0.0918564 (0, 21) ~ (4, -1) => 0.0945573 (0, 22) ~ (4, -1) => 0.0778609 (0, 23) ~ (4, -1) => 0.0692046 (0, 24) ~ (4, -1) => 0.0491916 (0, 25) ~ (4, -1) => 0.0519622 (0, 26) ~ (4, -1) => 0.0581443 (0, 27) ~ (4, -1) => 0.0410307 (0, 28) ~ (4, -1) => 0.0326463 (0, 29) ~ (4, -1) => 0.0271674 (0, 30) ~ (4, -1) => 0.0251403 (0, 31) ~ (4, -1) => 0.0366544 (0, 32) ~ (4, -1) => 0.0411676 (0, 33) ~ (4, -1) => 0.0494631 (0, 34) ~ (4, -1) => 0.0698045 (0, 35) ~ (4, -1) => 0.104638 (0, 36) ~ (4, -1) => 0.137128 (0, 37) ~ (4, -1) => 0.148598 (0, 38) ~ (4, -1) => 0.153452 (0, 39) ~ (4, -1) => 0.160919 (0, 40) ~ (4, -1) => 0.173389 (0, 41) ~ (4, -1) => 0.20144 (0, 42) ~ (4, -1) => 0.18477 (0, 43) ~ (4, -1) => 0.161589 (0, 44) ~ (4, -1) => 0.161462 (0, 45) ~ (4, -1) => 0.155872 (0, 46) ~ (4, -1) => 0.107523 (0, 47) ~ (4, -1) => 0.0617432 (0, 48) ~ (4, -1) => 0.146152 (0, 49) ~ (4, -1) => 0.165848 (0, 50) ~ (4, -1) => 0.0871824 (0, 51) ~ (4, -1) => 0.0597811 (0, 52) ~ (4, -1) => 0.0559696 (0, 53) ~ (4, -1) => 0.0733211 (0, 54) ~ (4, -1) => 0.0731589 (0, 55) ~ (4, -1) => 0.0424263 (0, 56) ~ (4, -1) => 0.03978 (0, 57) ~ (4, -1) => 0.0404378 (0, 58) ~ (4, -1) => 0.0343113 (0, 59) ~ (4, -1) => 0.0213943 (0, 60) ~ (4, -1) => 0.0149022 (0, 61) ~ (4, -1) => 0.011558 (0, 62) ~ (4, -1) => 0.00996262 (0, 63) ~ (4, -1) => 0.00902694 (0, 64) ~ (4, -1) => 0.00579423 (0, 65) ~ (4, -1) => 0.00344515 (0, 66) ~ (4, -1) => 0.00244266 (0, 67) ~ (4, -1) => 0.00211805 (0, 68) ~ (4, -1) => 0.00176966 (0, 69) ~ (4, -1) => 0.00139618 (0, 70) ~ (4, -1) => 0.00097239 (0, 71) ~ (4, -1) => 0.000545561 (0, 72) ~ (4, -1) => 0.000396788 (0, -1) ~ (4, 0) => 0.000485778 (0, -1) ~ (4, 1) => 0.00148392 (0, -1) ~ (4, 2) => 0.00271869 (0, -1) ~ (4, 3) => 0.00415862 (0, -1) ~ (4, 4) => 0.0057987 (0, -1) ~ (4, 5) => 0.00623131 (0, -1) ~ (4, 6) => 0.00670302 (0, -1) ~ (4, 7) => 0.00732833 (0, -1) ~ (4, 8) => 0.00799137 (0, -1) ~ (4, 9) => 0.00991583 (0, -1) ~ (4, 10) => 0.0145533 (0, -1) ~ (4, 11) => 0.0189404 (0, -1) ~ (4, 12) => 0.0242434 (0, -1) ~ (4, 13) => 0.0419483 (0, -1) ~ (4, 14) => 0.0487487 (0, -1) ~ (4, 15) => 0.0540268 (0, -1) ~ (4, 16) => 0.0555215 (0, -1) ~ (4, 17) => 0.0730528 (0, -1) ~ (4, 18) => 0.0912071 (0, -1) ~ (4, 19) => 0.0949929 (0, -1) ~ (4, 20) => 0.0640061 (0, -1) ~ (4, 21) => 0.106268 (0, -1) ~ (4, 22) => 0.0676255 (0, -1) ~ (4, 23) => 0.0667446 (0, -1) ~ (4, 24) => 0.0715125 (0, -1) ~ (4, 25) => 0.0595916 (0, -1) ~ (4, 26) => 0.0653252 (0, -1) ~ (4, 27) => 0.087918 (0, -1) ~ (4, 28) => 0.085913 (0, -1) ~ (4, 29) => 0.0494456 (0, -1) ~ (4, 30) => 0.0514761 (0, -1) ~ (4, 31) => 0.040239 (0, -1) ~ (4, 32) => 0.0477791 (0, -1) ~ (4, 33) => 0.0376703 (0, -1) ~ (4, 34) => 0.0340439 (0, -1) ~ (4, 35) => 0.0378354 (0, -1) ~ (4, 36) => 0.0492928 (0, -1) ~ (4, 37) => 0.0490222 (0, -1) ~ (4, 38) => 0.0542755 (0, -1) ~ (4, 39) => 0.0443546 (0, -1) ~ (4, 40) => 0.0311347 (0, -1) ~ (4, 41) => 0.0255986 (0, -1) ~ (4, 42) => 0.0308209 (0, -1) ~ (4, 43) => 0.0340663 (0, -1) ~ (4, 44) => 0.0272668 (0, -1) ~ (4, 45) => 0.0223807 (0, -1) ~ (4, 46) => 0.021122 (0, -1) ~ (4, 47) => 0.0192357 (0, -1) ~ (4, 48) => 0.015327 (0, -1) ~ (4, 49) => 0.0200332 (0, -1) ~ (4, 50) => 0.0167421 (0, -1) ~ (4, 51) => 0.0133354 (0, -1) ~ (4, 52) => 0.0125208 (0, -1) ~ (4, 53) => 0.0205573 (0, -1) ~ (4, 54) => 0.015322 (0, -1) ~ (4, 55) => 0.0120195 (0, -1) ~ (4, 56) => 0.0114666 (0, -1) ~ (4, 57) => 0.0102838 (0, -1) ~ (4, 58) => 0.0149022 (0, -1) ~ (4, 59) => 0.011558 (0, -1) ~ (4, 60) => 0.00996262 (0, -1) ~ (4, 61) => 0.00902694 (0, -1) ~ (4, 62) => 0.00579423 (0, -1) ~ (4, 63) => 0.00344515 (0, -1) ~ (4, 64) => 0.00244266 (0, -1) ~ (4, 65) => 0.00211805 (0, -1) ~ (4, 66) => 0.00176966 (0, -1) ~ (4, 67) => 0.00139618 (0, -1) ~ (4, 68) => 0.00097239 (0, -1) ~ (4, 69) => 0.000545561 (0, -1) ~ (4, 70) => 0.000396788 ; Sparse posterior probability matrix for sequences 1 and 2 ; Format is: ; (1, position_1) ~ (2, position_2) => prob ; which means that (1, position_1) is aligned to (2, position_2) with probability prob. ; (1, position_1) ~ (2, -1) => prob ; means that (1, position_1) is aligned to a gap in 2 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (1, 0) ~ (2, 0) => 0.999094 (1, 1) ~ (2, 1) => 0.997448 (1, 2) ~ (2, 2) => 0.986767 (1, 3) ~ (2, 3) => 0.978374 (1, 4) ~ (2, 4) => 0.972173 (1, 5) ~ (2, 5) => 0.964819 (1, 6) ~ (2, 6) => 0.95891 (1, 7) ~ (2, 7) => 0.955012 (1, 8) ~ (2, 8) => 0.95247 (1, 9) ~ (2, 9) => 0.951644 (1, 10) ~ (2, 10) => 0.943464 (1, 11) ~ (2, 11) => 0.782914 (1, 12) ~ (2, 12) => 0.623542 (1, 13) ~ (2, 10) => 0.0112665 (1, 13) ~ (2, 13) => 0.565875 (1, 14) ~ (2, 11) => 0.139013 (1, 14) ~ (2, 12) => 0.0175483 (1, 14) ~ (2, 14) => 0.54091 (1, 15) ~ (2, 12) => 0.268444 (1, 15) ~ (2, 13) => 0.0187597 (1, 15) ~ (2, 15) => 0.502274 (1, 16) ~ (2, 13) => 0.314698 (1, 16) ~ (2, 14) => 0.0140877 (1, 16) ~ (2, 16) => 0.460893 (1, 16) ~ (2, 17) => 0.0108112 (1, 17) ~ (2, 14) => 0.343784 (1, 17) ~ (2, 17) => 0.430631 (1, 18) ~ (2, 15) => 0.366036 (1, 18) ~ (2, 18) => 0.29449 (1, 19) ~ (2, 16) => 0.381954 (1, 19) ~ (2, 19) => 0.163511 (1, 20) ~ (2, 17) => 0.38833 (1, 20) ~ (2, 19) => 0.0138335 (1, 20) ~ (2, 20) => 0.0530408 (1, 21) ~ (2, 12) => 0.0134113 (1, 21) ~ (2, 14) => 0.0102321 (1, 21) ~ (2, 18) => 0.480316 (1, 21) ~ (2, 20) => 0.0148497 (1, 21) ~ (2, 21) => 0.0205532 (1, 22) ~ (2, 13) => 0.0258397 (1, 22) ~ (2, 15) => 0.0174053 (1, 22) ~ (2, 16) => 0.0245665 (1, 22) ~ (2, 19) => 0.57662 (1, 22) ~ (2, 21) => 0.0182654 (1, 22) ~ (2, 22) => 0.0182623 (1, 23) ~ (2, 14) => 0.0349297 (1, 23) ~ (2, 16) => 0.0145924 (1, 23) ~ (2, 17) => 0.0414316 (1, 23) ~ (2, 20) => 0.661132 (1, 23) ~ (2, 22) => 0.012064 (1, 23) ~ (2, 23) => 0.0160862 (1, 24) ~ (2, 15) => 0.0390256 (1, 24) ~ (2, 17) => 0.0127681 (1, 24) ~ (2, 18) => 0.050498 (1, 24) ~ (2, 19) => 0.0149119 (1, 24) ~ (2, 21) => 0.657612 (1, 24) ~ (2, 24) => 0.0143432 (1, 25) ~ (2, 16) => 0.0340814 (1, 25) ~ (2, 18) => 0.0123949 (1, 25) ~ (2, 19) => 0.058215 (1, 25) ~ (2, 20) => 0.0186699 (1, 25) ~ (2, 22) => 0.58866 (1, 25) ~ (2, 23) => 0.0109872 (1, 26) ~ (2, 16) => 0.0135688 (1, 26) ~ (2, 17) => 0.0333154 (1, 26) ~ (2, 19) => 0.0111839 (1, 26) ~ (2, 20) => 0.0655114 (1, 26) ~ (2, 21) => 0.0272406 (1, 26) ~ (2, 23) => 0.527228 (1, 26) ~ (2, 24) => 0.0138852 (1, 27) ~ (2, 15) => 0.0109047 (1, 27) ~ (2, 17) => 0.0219079 (1, 27) ~ (2, 18) => 0.0345236 (1, 27) ~ (2, 21) => 0.0698108 (1, 27) ~ (2, 22) => 0.022402 (1, 27) ~ (2, 24) => 0.459169 (1, 28) ~ (2, 16) => 0.010307 (1, 28) ~ (2, 18) => 0.0369566 (1, 28) ~ (2, 19) => 0.0349588 (1, 28) ~ (2, 22) => 0.048518 (1, 28) ~ (2, 23) => 0.0140514 (1, 28) ~ (2, 25) => 0.11556 (1, 29) ~ (2, 17) => 0.0110613 (1, 29) ~ (2, 19) => 0.0530166 (1, 29) ~ (2, 20) => 0.0350594 (1, 29) ~ (2, 23) => 0.0263944 (1, 29) ~ (2, 25) => 0.0119736 (1, 29) ~ (2, 26) => 0.0670001 (1, 30) ~ (2, 20) => 0.0739915 (1, 30) ~ (2, 21) => 0.011643 (1, 30) ~ (2, 27) => 0.0129328 (1, 31) ~ (2, 21) => 0.135111 (1, 31) ~ (2, 22) => 0.0115332 (1, 31) ~ (2, 23) => 0.011898 (1, 32) ~ (2, 22) => 0.22652 (1, 32) ~ (2, 24) => 0.0121469 (1, 33) ~ (2, 23) => 0.3225 (1, 33) ~ (2, 25) => 0.0126822 (1, 34) ~ (2, 24) => 0.449264 (1, 35) ~ (2, 25) => 0.81488 (1, 36) ~ (2, 25) => 0.0113769 (1, 36) ~ (2, 26) => 0.888401 (1, 37) ~ (2, 26) => 0.0113593 (1, 37) ~ (2, 27) => 0.939763 (1, 38) ~ (2, 27) => 0.0152703 (1, 38) ~ (2, 28) => 0.938306 (1, 39) ~ (2, 28) => 0.0202989 (1, 39) ~ (2, 29) => 0.941099 (1, 40) ~ (2, 29) => 0.0186615 (1, 40) ~ (2, 30) => 0.947784 (1, 41) ~ (2, 30) => 0.0164206 (1, 41) ~ (2, 31) => 0.952835 (1, 42) ~ (2, 31) => 0.015842 (1, 42) ~ (2, 32) => 0.952413 (1, 43) ~ (2, 32) => 0.0129773 (1, 43) ~ (2, 33) => 0.954789 (1, 44) ~ (2, 33) => 0.0101037 (1, 44) ~ (2, 34) => 0.958371 (1, 45) ~ (2, 35) => 0.959456 (1, 46) ~ (2, 36) => 0.965329 (1, 46) ~ (2, 37) => 0.0111856 (1, 47) ~ (2, 37) => 0.964527 (1, 47) ~ (2, 38) => 0.015778 (1, 48) ~ (2, 38) => 0.944404 (1, 48) ~ (2, 39) => 0.0345369 (1, 49) ~ (2, 39) => 0.897005 (1, 49) ~ (2, 40) => 0.0749715 (1, 50) ~ (2, 40) => 0.831309 (1, 50) ~ (2, 41) => 0.130936 (1, 51) ~ (2, 41) => 0.798738 (1, 51) ~ (2, 42) => 0.154102 (1, 52) ~ (2, 41) => 0.0132142 (1, 52) ~ (2, 42) => 0.725309 (1, 52) ~ (2, 43) => 0.209116 (1, 53) ~ (2, 42) => 0.0150667 (1, 53) ~ (2, 43) => 0.655637 (1, 53) ~ (2, 44) => 0.265498 (1, 54) ~ (2, 43) => 0.015162 (1, 54) ~ (2, 44) => 0.589069 (1, 54) ~ (2, 45) => 0.322512 (1, 55) ~ (2, 44) => 0.0140719 (1, 55) ~ (2, 45) => 0.524877 (1, 55) ~ (2, 46) => 0.380721 (1, 55) ~ (2, 51) => 0.0100137 (1, 56) ~ (2, 45) => 0.0137075 (1, 56) ~ (2, 46) => 0.500871 (1, 56) ~ (2, 47) => 0.384918 (1, 56) ~ (2, 52) => 0.0103494 (1, 57) ~ (2, 45) => 0.0100424 (1, 57) ~ (2, 46) => 0.0112021 (1, 57) ~ (2, 47) => 0.509806 (1, 57) ~ (2, 48) => 0.366433 (1, 58) ~ (2, 44) => 0.0105319 (1, 58) ~ (2, 47) => 0.015009 (1, 58) ~ (2, 48) => 0.536204 (1, 58) ~ (2, 49) => 0.346334 (1, 59) ~ (2, 45) => 0.0123206 (1, 59) ~ (2, 48) => 0.0156557 (1, 59) ~ (2, 49) => 0.565172 (1, 59) ~ (2, 50) => 0.324536 (1, 60) ~ (2, 46) => 0.0144696 (1, 60) ~ (2, 49) => 0.0164832 (1, 60) ~ (2, 50) => 0.591594 (1, 60) ~ (2, 51) => 0.306718 (1, 61) ~ (2, 47) => 0.0122717 (1, 61) ~ (2, 50) => 0.0177466 (1, 61) ~ (2, 51) => 0.616943 (1, 61) ~ (2, 52) => 0.282094 (1, 62) ~ (2, 48) => 0.0114546 (1, 62) ~ (2, 51) => 0.0197631 (1, 62) ~ (2, 52) => 0.63336 (1, 62) ~ (2, 53) => 0.260882 (1, 62) ~ (2, 54) => 0.0103619 (1, 63) ~ (2, 49) => 0.0104938 (1, 63) ~ (2, 52) => 0.0170966 (1, 63) ~ (2, 53) => 0.654907 (1, 63) ~ (2, 54) => 0.215816 (1, 63) ~ (2, 55) => 0.0109924 (1, 64) ~ (2, 50) => 0.0100197 (1, 64) ~ (2, 53) => 0.0170993 (1, 64) ~ (2, 54) => 0.703137 (1, 64) ~ (2, 55) => 0.201086 (1, 64) ~ (2, 56) => 0.0125242 (1, 65) ~ (2, 54) => 0.0149272 (1, 65) ~ (2, 55) => 0.723008 (1, 65) ~ (2, 56) => 0.181918 (1, 65) ~ (2, 57) => 0.01143 (1, 66) ~ (2, 55) => 0.0117348 (1, 66) ~ (2, 56) => 0.74943 (1, 66) ~ (2, 57) => 0.137998 (1, 67) ~ (2, 57) => 0.805113 (1, 67) ~ (2, 58) => 0.0939498 (1, 68) ~ (2, 58) => 0.860193 (1, 68) ~ (2, 59) => 0.0510018 (1, 69) ~ (2, 59) => 0.918843 (1, 69) ~ (2, 60) => 0.0142735 (1, 70) ~ (2, 60) => 0.971603 (1, 71) ~ (2, 61) => 0.987802 (1, 72) ~ (2, 62) => 0.989852 ; gap posteriors (1, 0) ~ (2, -1) => 0.000905573 (1, 1) ~ (2, -1) => 0.00255185 (1, 2) ~ (2, -1) => 0.0132332 (1, 3) ~ (2, -1) => 0.0216258 (1, 4) ~ (2, -1) => 0.0278274 (1, 5) ~ (2, -1) => 0.0351809 (1, 6) ~ (2, -1) => 0.0410896 (1, 7) ~ (2, -1) => 0.0449879 (1, 8) ~ (2, -1) => 0.0475303 (1, 9) ~ (2, -1) => 0.0483561 (1, 10) ~ (2, -1) => 0.0565364 (1, 11) ~ (2, -1) => 0.217086 (1, 12) ~ (2, -1) => 0.376458 (1, 13) ~ (2, -1) => 0.422859 (1, 14) ~ (2, -1) => 0.302529 (1, 15) ~ (2, -1) => 0.210523 (1, 16) ~ (2, -1) => 0.19951 (1, 17) ~ (2, -1) => 0.225584 (1, 18) ~ (2, -1) => 0.339474 (1, 19) ~ (2, -1) => 0.454535 (1, 20) ~ (2, -1) => 0.544796 (1, 21) ~ (2, -1) => 0.460637 (1, 22) ~ (2, -1) => 0.319041 (1, 23) ~ (2, -1) => 0.219764 (1, 24) ~ (2, -1) => 0.210841 (1, 25) ~ (2, -1) => 0.276991 (1, 26) ~ (2, -1) => 0.308066 (1, 27) ~ (2, -1) => 0.381282 (1, 28) ~ (2, -1) => 0.739648 (1, 29) ~ (2, -1) => 0.795495 (1, 30) ~ (2, -1) => 0.901433 (1, 31) ~ (2, -1) => 0.841457 (1, 32) ~ (2, -1) => 0.761333 (1, 33) ~ (2, -1) => 0.664818 (1, 34) ~ (2, -1) => 0.550736 (1, 35) ~ (2, -1) => 0.18512 (1, 36) ~ (2, -1) => 0.100222 (1, 37) ~ (2, -1) => 0.0488778 (1, 38) ~ (2, -1) => 0.0464234 (1, 39) ~ (2, -1) => 0.0386017 (1, 40) ~ (2, -1) => 0.0335548 (1, 41) ~ (2, -1) => 0.0307443 (1, 42) ~ (2, -1) => 0.0317452 (1, 43) ~ (2, -1) => 0.0322342 (1, 44) ~ (2, -1) => 0.0315252 (1, 45) ~ (2, -1) => 0.0405439 (1, 46) ~ (2, -1) => 0.0234852 (1, 47) ~ (2, -1) => 0.0196954 (1, 48) ~ (2, -1) => 0.0210589 (1, 49) ~ (2, -1) => 0.0280236 (1, 50) ~ (2, -1) => 0.0377551 (1, 51) ~ (2, -1) => 0.0471599 (1, 52) ~ (2, -1) => 0.052361 (1, 53) ~ (2, -1) => 0.0637985 (1, 54) ~ (2, -1) => 0.073257 (1, 55) ~ (2, -1) => 0.0703172 (1, 56) ~ (2, -1) => 0.0901538 (1, 57) ~ (2, -1) => 0.102516 (1, 58) ~ (2, -1) => 0.0919218 (1, 59) ~ (2, -1) => 0.0823148 (1, 60) ~ (2, -1) => 0.0707349 (1, 61) ~ (2, -1) => 0.0709448 (1, 62) ~ (2, -1) => 0.0641783 (1, 63) ~ (2, -1) => 0.0906945 (1, 64) ~ (2, -1) => 0.0561339 (1, 65) ~ (2, -1) => 0.0687169 (1, 66) ~ (2, -1) => 0.100837 (1, 67) ~ (2, -1) => 0.100937 (1, 68) ~ (2, -1) => 0.0888056 (1, 69) ~ (2, -1) => 0.0668831 (1, 70) ~ (2, -1) => 0.0283966 (1, 71) ~ (2, -1) => 0.0121977 (1, 72) ~ (2, -1) => 0.0101479 (1, -1) ~ (2, 0) => 0.000905573 (1, -1) ~ (2, 1) => 0.00255185 (1, -1) ~ (2, 2) => 0.0132332 (1, -1) ~ (2, 3) => 0.0216258 (1, -1) ~ (2, 4) => 0.0278274 (1, -1) ~ (2, 5) => 0.0351809 (1, -1) ~ (2, 6) => 0.0410896 (1, -1) ~ (2, 7) => 0.0449879 (1, -1) ~ (2, 8) => 0.0475303 (1, -1) ~ (2, 9) => 0.0483561 (1, -1) ~ (2, 10) => 0.0452699 (1, -1) ~ (2, 11) => 0.0780733 (1, -1) ~ (2, 12) => 0.0770544 (1, -1) ~ (2, 13) => 0.0748279 (1, -1) ~ (2, 14) => 0.0560563 (1, -1) ~ (2, 15) => 0.0643543 (1, -1) ~ (2, 16) => 0.0600374 (1, -1) ~ (2, 17) => 0.0497433 (1, -1) ~ (2, 18) => 0.0908208 (1, -1) ~ (2, 19) => 0.0737488 (1, -1) ~ (2, 20) => 0.0777454 (1, -1) ~ (2, 21) => 0.0597632 (1, -1) ~ (2, 22) => 0.0720404 (1, -1) ~ (2, 23) => 0.0708541 (1, -1) ~ (2, 24) => 0.0511919 (1, -1) ~ (2, 25) => 0.0335279 (1, -1) ~ (2, 26) => 0.0332396 (1, -1) ~ (2, 27) => 0.032034 (1, -1) ~ (2, 28) => 0.0413947 (1, -1) ~ (2, 29) => 0.0402391 (1, -1) ~ (2, 30) => 0.0357957 (1, -1) ~ (2, 31) => 0.0313229 (1, -1) ~ (2, 32) => 0.0346099 (1, -1) ~ (2, 33) => 0.0351078 (1, -1) ~ (2, 34) => 0.0416289 (1, -1) ~ (2, 35) => 0.0405439 (1, -1) ~ (2, 36) => 0.0346707 (1, -1) ~ (2, 37) => 0.0242878 (1, -1) ~ (2, 38) => 0.0398179 (1, -1) ~ (2, 39) => 0.0684582 (1, -1) ~ (2, 40) => 0.0937197 (1, -1) ~ (2, 41) => 0.0571113 (1, -1) ~ (2, 42) => 0.105523 (1, -1) ~ (2, 43) => 0.120085 (1, -1) ~ (2, 44) => 0.12083 (1, -1) ~ (2, 45) => 0.116541 (1, -1) ~ (2, 46) => 0.0927367 (1, -1) ~ (2, 47) => 0.077995 (1, -1) ~ (2, 48) => 0.0702529 (1, -1) ~ (2, 49) => 0.0615169 (1, -1) ~ (2, 50) => 0.0561027 (1, -1) ~ (2, 51) => 0.0465621 (1, -1) ~ (2, 52) => 0.0571002 (1, -1) ~ (2, 53) => 0.0671119 (1, -1) ~ (2, 54) => 0.0557581 (1, -1) ~ (2, 55) => 0.0531792 (1, -1) ~ (2, 56) => 0.0561283 (1, -1) ~ (2, 57) => 0.0454589 (1, -1) ~ (2, 58) => 0.0458576 (1, -1) ~ (2, 59) => 0.0301548 (1, -1) ~ (2, 60) => 0.0141231 (1, -1) ~ (2, 61) => 0.0121977 (1, -1) ~ (2, 62) => 0.0101479 ; Sparse posterior probability matrix for sequences 1 and 3 ; Format is: ; (1, position_1) ~ (3, position_2) => prob ; which means that (1, position_1) is aligned to (3, position_2) with probability prob. ; (1, position_1) ~ (3, -1) => prob ; means that (1, position_1) is aligned to a gap in 3 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (1, 0) ~ (3, 0) => 0.995396 (1, 1) ~ (3, 1) => 0.990391 (1, 2) ~ (3, 2) => 0.985028 (1, 3) ~ (3, 3) => 0.981486 (1, 4) ~ (3, 4) => 0.978827 (1, 5) ~ (3, 5) => 0.97648 (1, 6) ~ (3, 6) => 0.972703 (1, 7) ~ (3, 4) => 0.0115628 (1, 7) ~ (3, 7) => 0.967717 (1, 8) ~ (3, 5) => 0.0135615 (1, 8) ~ (3, 8) => 0.959045 (1, 9) ~ (3, 6) => 0.0163987 (1, 9) ~ (3, 9) => 0.949696 (1, 10) ~ (3, 7) => 0.0190044 (1, 10) ~ (3, 10) => 0.937617 (1, 10) ~ (3, 11) => 0.0129853 (1, 11) ~ (3, 8) => 0.0211865 (1, 11) ~ (3, 11) => 0.910826 (1, 11) ~ (3, 12) => 0.0157986 (1, 12) ~ (3, 9) => 0.023134 (1, 12) ~ (3, 12) => 0.881964 (1, 12) ~ (3, 13) => 0.0158382 (1, 13) ~ (3, 10) => 0.0266981 (1, 13) ~ (3, 12) => 0.0105404 (1, 13) ~ (3, 13) => 0.844069 (1, 13) ~ (3, 14) => 0.0148972 (1, 14) ~ (3, 11) => 0.0439572 (1, 14) ~ (3, 13) => 0.0126215 (1, 14) ~ (3, 14) => 0.815765 (1, 14) ~ (3, 15) => 0.0138622 (1, 15) ~ (3, 11) => 0.0104431 (1, 15) ~ (3, 12) => 0.0608694 (1, 15) ~ (3, 14) => 0.0112314 (1, 15) ~ (3, 15) => 0.78086 (1, 15) ~ (3, 16) => 0.0134008 (1, 16) ~ (3, 12) => 0.0109899 (1, 16) ~ (3, 13) => 0.0983563 (1, 16) ~ (3, 15) => 0.0179452 (1, 16) ~ (3, 16) => 0.739521 (1, 16) ~ (3, 17) => 0.0113865 (1, 17) ~ (3, 13) => 0.0104095 (1, 17) ~ (3, 14) => 0.125531 (1, 17) ~ (3, 16) => 0.026547 (1, 17) ~ (3, 17) => 0.703378 (1, 18) ~ (3, 15) => 0.151156 (1, 18) ~ (3, 16) => 0.0111796 (1, 18) ~ (3, 17) => 0.034269 (1, 18) ~ (3, 18) => 0.629933 (1, 19) ~ (3, 15) => 0.0108788 (1, 19) ~ (3, 16) => 0.174132 (1, 19) ~ (3, 18) => 0.0721763 (1, 19) ~ (3, 19) => 0.477315 (1, 19) ~ (3, 21) => 0.0153414 (1, 20) ~ (3, 16) => 0.01192 (1, 20) ~ (3, 17) => 0.189344 (1, 20) ~ (3, 18) => 0.0114817 (1, 20) ~ (3, 19) => 0.0996167 (1, 20) ~ (3, 20) => 0.420865 (1, 20) ~ (3, 22) => 0.0172597 (1, 21) ~ (3, 17) => 0.0189469 (1, 21) ~ (3, 18) => 0.20813 (1, 21) ~ (3, 19) => 0.0268727 (1, 21) ~ (3, 20) => 0.100019 (1, 21) ~ (3, 21) => 0.371805 (1, 21) ~ (3, 22) => 0.0109161 (1, 21) ~ (3, 23) => 0.0192062 (1, 22) ~ (3, 18) => 0.0247649 (1, 22) ~ (3, 19) => 0.301992 (1, 22) ~ (3, 20) => 0.0263423 (1, 22) ~ (3, 21) => 0.0976981 (1, 22) ~ (3, 22) => 0.363576 (1, 22) ~ (3, 23) => 0.0116817 (1, 22) ~ (3, 24) => 0.0184189 (1, 23) ~ (3, 19) => 0.0252746 (1, 23) ~ (3, 20) => 0.35478 (1, 23) ~ (3, 21) => 0.0269343 (1, 23) ~ (3, 22) => 0.0801417 (1, 23) ~ (3, 23) => 0.359805 (1, 23) ~ (3, 24) => 0.0124989 (1, 23) ~ (3, 25) => 0.0163924 (1, 24) ~ (3, 18) => 0.011919 (1, 24) ~ (3, 20) => 0.0199273 (1, 24) ~ (3, 21) => 0.390984 (1, 24) ~ (3, 22) => 0.038907 (1, 24) ~ (3, 23) => 0.0517075 (1, 24) ~ (3, 24) => 0.348992 (1, 24) ~ (3, 25) => 0.0137934 (1, 24) ~ (3, 26) => 0.0130414 (1, 25) ~ (3, 19) => 0.0129538 (1, 25) ~ (3, 21) => 0.0148458 (1, 25) ~ (3, 22) => 0.403158 (1, 25) ~ (3, 23) => 0.0561948 (1, 25) ~ (3, 24) => 0.0273747 (1, 25) ~ (3, 25) => 0.329881 (1, 25) ~ (3, 26) => 0.0169664 (1, 25) ~ (3, 27) => 0.0105858 (1, 26) ~ (3, 20) => 0.01294 (1, 26) ~ (3, 21) => 0.0118539 (1, 26) ~ (3, 22) => 0.0161972 (1, 26) ~ (3, 23) => 0.418513 (1, 26) ~ (3, 24) => 0.0706186 (1, 26) ~ (3, 25) => 0.0222531 (1, 26) ~ (3, 26) => 0.311964 (1, 26) ~ (3, 27) => 0.0183467 (1, 26) ~ (3, 28) => 0.0103098 (1, 27) ~ (3, 21) => 0.0131638 (1, 27) ~ (3, 22) => 0.0118709 (1, 27) ~ (3, 23) => 0.0183417 (1, 27) ~ (3, 24) => 0.44009 (1, 27) ~ (3, 25) => 0.0747324 (1, 27) ~ (3, 26) => 0.0175087 (1, 27) ~ (3, 27) => 0.300328 (1, 27) ~ (3, 28) => 0.0161952 (1, 28) ~ (3, 22) => 0.0121037 (1, 28) ~ (3, 23) => 0.0126842 (1, 28) ~ (3, 24) => 0.0212302 (1, 28) ~ (3, 25) => 0.445472 (1, 28) ~ (3, 26) => 0.0814102 (1, 28) ~ (3, 27) => 0.0138388 (1, 28) ~ (3, 28) => 0.267678 (1, 29) ~ (3, 23) => 0.0111073 (1, 29) ~ (3, 24) => 0.012566 (1, 29) ~ (3, 25) => 0.0339763 (1, 29) ~ (3, 26) => 0.453241 (1, 29) ~ (3, 27) => 0.085766 (1, 29) ~ (3, 28) => 0.0147963 (1, 29) ~ (3, 29) => 0.25958 (1, 30) ~ (3, 25) => 0.0125012 (1, 30) ~ (3, 26) => 0.041281 (1, 30) ~ (3, 27) => 0.450709 (1, 30) ~ (3, 28) => 0.0867804 (1, 30) ~ (3, 29) => 0.0116203 (1, 30) ~ (3, 30) => 0.252879 (1, 31) ~ (3, 26) => 0.0113047 (1, 31) ~ (3, 27) => 0.0465356 (1, 31) ~ (3, 28) => 0.47938 (1, 31) ~ (3, 29) => 0.0979211 (1, 31) ~ (3, 30) => 0.0128137 (1, 31) ~ (3, 31) => 0.256682 (1, 32) ~ (3, 26) => 0.0108535 (1, 32) ~ (3, 27) => 0.0139025 (1, 32) ~ (3, 28) => 0.0458842 (1, 32) ~ (3, 29) => 0.486734 (1, 32) ~ (3, 30) => 0.103579 (1, 32) ~ (3, 31) => 0.0112588 (1, 32) ~ (3, 32) => 0.257243 (1, 33) ~ (3, 27) => 0.0166269 (1, 33) ~ (3, 28) => 0.0141723 (1, 33) ~ (3, 29) => 0.04278 (1, 33) ~ (3, 30) => 0.489511 (1, 33) ~ (3, 31) => 0.103811 (1, 33) ~ (3, 33) => 0.254368 (1, 34) ~ (3, 28) => 0.0219532 (1, 34) ~ (3, 29) => 0.0143756 (1, 34) ~ (3, 30) => 0.03998 (1, 34) ~ (3, 31) => 0.492067 (1, 34) ~ (3, 32) => 0.105331 (1, 34) ~ (3, 34) => 0.246016 (1, 35) ~ (3, 29) => 0.0255324 (1, 35) ~ (3, 30) => 0.0135853 (1, 35) ~ (3, 31) => 0.0350078 (1, 35) ~ (3, 32) => 0.4903 (1, 35) ~ (3, 33) => 0.0987823 (1, 35) ~ (3, 34) => 0.0161749 (1, 35) ~ (3, 35) => 0.235413 (1, 36) ~ (3, 30) => 0.0296384 (1, 36) ~ (3, 31) => 0.010736 (1, 36) ~ (3, 32) => 0.0177727 (1, 36) ~ (3, 33) => 0.52432 (1, 36) ~ (3, 34) => 0.0860192 (1, 36) ~ (3, 35) => 0.0234103 (1, 36) ~ (3, 36) => 0.212867 (1, 37) ~ (3, 31) => 0.034319 (1, 37) ~ (3, 33) => 0.0167545 (1, 37) ~ (3, 34) => 0.543198 (1, 37) ~ (3, 35) => 0.0778639 (1, 37) ~ (3, 36) => 0.0273952 (1, 37) ~ (3, 37) => 0.196289 (1, 38) ~ (3, 32) => 0.0377224 (1, 38) ~ (3, 34) => 0.0174039 (1, 38) ~ (3, 35) => 0.555875 (1, 38) ~ (3, 36) => 0.0659105 (1, 38) ~ (3, 37) => 0.0275898 (1, 38) ~ (3, 38) => 0.177806 (1, 38) ~ (3, 39) => 0.0101026 (1, 39) ~ (3, 33) => 0.0394619 (1, 39) ~ (3, 35) => 0.0129644 (1, 39) ~ (3, 36) => 0.594134 (1, 39) ~ (3, 37) => 0.0510767 (1, 39) ~ (3, 38) => 0.0271276 (1, 39) ~ (3, 39) => 0.175218 (1, 39) ~ (3, 40) => 0.0109782 (1, 40) ~ (3, 34) => 0.0419389 (1, 40) ~ (3, 36) => 0.0112319 (1, 40) ~ (3, 37) => 0.62399 (1, 40) ~ (3, 38) => 0.0328705 (1, 40) ~ (3, 39) => 0.0265368 (1, 40) ~ (3, 40) => 0.169942 (1, 40) ~ (3, 41) => 0.0114618 (1, 41) ~ (3, 35) => 0.0430015 (1, 41) ~ (3, 38) => 0.660358 (1, 41) ~ (3, 39) => 0.0296371 (1, 41) ~ (3, 40) => 0.0233448 (1, 41) ~ (3, 41) => 0.161792 (1, 41) ~ (3, 42) => 0.0149258 (1, 42) ~ (3, 36) => 0.0428936 (1, 42) ~ (3, 39) => 0.669817 (1, 42) ~ (3, 40) => 0.0264389 (1, 42) ~ (3, 41) => 0.0214453 (1, 42) ~ (3, 42) => 0.149187 (1, 42) ~ (3, 43) => 0.0175046 (1, 43) ~ (3, 37) => 0.0431126 (1, 43) ~ (3, 40) => 0.682826 (1, 43) ~ (3, 41) => 0.0247335 (1, 43) ~ (3, 42) => 0.0168342 (1, 43) ~ (3, 43) => 0.12862 (1, 43) ~ (3, 44) => 0.0206483 (1, 44) ~ (3, 38) => 0.0433083 (1, 44) ~ (3, 41) => 0.691843 (1, 44) ~ (3, 42) => 0.0244189 (1, 44) ~ (3, 43) => 0.0125934 (1, 44) ~ (3, 44) => 0.101424 (1, 44) ~ (3, 45) => 0.02514 (1, 45) ~ (3, 39) => 0.0423174 (1, 45) ~ (3, 42) => 0.704015 (1, 45) ~ (3, 43) => 0.0230706 (1, 45) ~ (3, 44) => 0.0153593 (1, 45) ~ (3, 45) => 0.096491 (1, 45) ~ (3, 46) => 0.0253639 (1, 46) ~ (3, 40) => 0.040037 (1, 46) ~ (3, 43) => 0.725074 (1, 46) ~ (3, 44) => 0.0185435 (1, 46) ~ (3, 45) => 0.0139109 (1, 46) ~ (3, 46) => 0.0932612 (1, 46) ~ (3, 47) => 0.0240035 (1, 47) ~ (3, 41) => 0.0358536 (1, 47) ~ (3, 44) => 0.742786 (1, 47) ~ (3, 45) => 0.01195 (1, 47) ~ (3, 46) => 0.0152377 (1, 47) ~ (3, 47) => 0.0851979 (1, 47) ~ (3, 48) => 0.0262604 (1, 48) ~ (3, 42) => 0.0328576 (1, 48) ~ (3, 43) => 0.0135657 (1, 48) ~ (3, 45) => 0.746086 (1, 48) ~ (3, 47) => 0.0133431 (1, 48) ~ (3, 48) => 0.0797635 (1, 48) ~ (3, 49) => 0.0294528 (1, 49) ~ (3, 43) => 0.0280398 (1, 49) ~ (3, 44) => 0.019162 (1, 49) ~ (3, 45) => 0.0162065 (1, 49) ~ (3, 46) => 0.734722 (1, 49) ~ (3, 49) => 0.0725957 (1, 49) ~ (3, 50) => 0.0333288 (1, 50) ~ (3, 44) => 0.0163408 (1, 50) ~ (3, 45) => 0.0248054 (1, 50) ~ (3, 46) => 0.0400117 (1, 50) ~ (3, 47) => 0.669056 (1, 50) ~ (3, 50) => 0.0639796 (1, 50) ~ (3, 51) => 0.0362032 (1, 51) ~ (3, 45) => 0.0105474 (1, 51) ~ (3, 46) => 0.0199165 (1, 51) ~ (3, 47) => 0.127149 (1, 51) ~ (3, 48) => 0.600043 (1, 51) ~ (3, 51) => 0.0578059 (1, 51) ~ (3, 52) => 0.0382132 (1, 52) ~ (3, 47) => 0.0288882 (1, 52) ~ (3, 48) => 0.20295 (1, 52) ~ (3, 49) => 0.518334 (1, 52) ~ (3, 52) => 0.048736 (1, 52) ~ (3, 53) => 0.0391005 (1, 53) ~ (3, 48) => 0.0341356 (1, 53) ~ (3, 49) => 0.271832 (1, 53) ~ (3, 50) => 0.462479 (1, 53) ~ (3, 53) => 0.0339093 (1, 53) ~ (3, 54) => 0.038158 (1, 54) ~ (3, 49) => 0.0551342 (1, 54) ~ (3, 50) => 0.318716 (1, 54) ~ (3, 51) => 0.403304 (1, 54) ~ (3, 52) => 0.0130531 (1, 54) ~ (3, 53) => 0.0116799 (1, 54) ~ (3, 54) => 0.0279478 (1, 54) ~ (3, 55) => 0.0343756 (1, 55) ~ (3, 50) => 0.0696785 (1, 55) ~ (3, 51) => 0.362204 (1, 55) ~ (3, 52) => 0.37353 (1, 55) ~ (3, 53) => 0.0220372 (1, 55) ~ (3, 54) => 0.0161689 (1, 55) ~ (3, 55) => 0.0183638 (1, 55) ~ (3, 56) => 0.0334753 (1, 56) ~ (3, 51) => 0.0805352 (1, 56) ~ (3, 52) => 0.391937 (1, 56) ~ (3, 53) => 0.356031 (1, 56) ~ (3, 54) => 0.0284829 (1, 56) ~ (3, 55) => 0.0183179 (1, 56) ~ (3, 57) => 0.0311126 (1, 57) ~ (3, 52) => 0.082601 (1, 57) ~ (3, 53) => 0.409511 (1, 57) ~ (3, 54) => 0.320715 (1, 57) ~ (3, 55) => 0.0370158 (1, 57) ~ (3, 56) => 0.0157029 (1, 57) ~ (3, 58) => 0.0290831 (1, 58) ~ (3, 53) => 0.0836298 (1, 58) ~ (3, 54) => 0.424384 (1, 58) ~ (3, 55) => 0.318713 (1, 58) ~ (3, 56) => 0.0398674 (1, 58) ~ (3, 57) => 0.0186446 (1, 58) ~ (3, 59) => 0.0258257 (1, 59) ~ (3, 54) => 0.0994068 (1, 59) ~ (3, 55) => 0.41132 (1, 59) ~ (3, 56) => 0.334235 (1, 59) ~ (3, 57) => 0.0396993 (1, 59) ~ (3, 58) => 0.019212 (1, 59) ~ (3, 60) => 0.0210773 (1, 60) ~ (3, 55) => 0.103516 (1, 60) ~ (3, 56) => 0.414033 (1, 60) ~ (3, 57) => 0.341186 (1, 60) ~ (3, 58) => 0.0363834 (1, 60) ~ (3, 59) => 0.0226094 (1, 60) ~ (3, 61) => 0.0183042 (1, 61) ~ (3, 56) => 0.106281 (1, 61) ~ (3, 57) => 0.415867 (1, 61) ~ (3, 58) => 0.342795 (1, 61) ~ (3, 59) => 0.0342202 (1, 61) ~ (3, 60) => 0.0236904 (1, 61) ~ (3, 62) => 0.0151772 (1, 62) ~ (3, 57) => 0.108796 (1, 62) ~ (3, 58) => 0.410822 (1, 62) ~ (3, 59) => 0.350547 (1, 62) ~ (3, 60) => 0.026028 (1, 62) ~ (3, 61) => 0.0242796 (1, 62) ~ (3, 63) => 0.012299 (1, 63) ~ (3, 58) => 0.108405 (1, 63) ~ (3, 59) => 0.413771 (1, 63) ~ (3, 60) => 0.337751 (1, 63) ~ (3, 61) => 0.0138994 (1, 63) ~ (3, 62) => 0.0230785 (1, 64) ~ (3, 59) => 0.102746 (1, 64) ~ (3, 60) => 0.448018 (1, 64) ~ (3, 61) => 0.303239 (1, 64) ~ (3, 62) => 0.0123941 (1, 64) ~ (3, 63) => 0.0203131 (1, 65) ~ (3, 60) => 0.0698707 (1, 65) ~ (3, 61) => 0.533674 (1, 65) ~ (3, 62) => 0.262921 (1, 65) ~ (3, 63) => 0.016051 (1, 65) ~ (3, 64) => 0.0206803 (1, 66) ~ (3, 61) => 0.0550442 (1, 66) ~ (3, 62) => 0.590582 (1, 66) ~ (3, 63) => 0.228459 (1, 66) ~ (3, 64) => 0.0193094 (1, 66) ~ (3, 65) => 0.018637 (1, 67) ~ (3, 62) => 0.0533169 (1, 67) ~ (3, 63) => 0.631199 (1, 67) ~ (3, 64) => 0.194184 (1, 67) ~ (3, 65) => 0.0169158 (1, 67) ~ (3, 66) => 0.0145392 (1, 68) ~ (3, 63) => 0.0484263 (1, 68) ~ (3, 64) => 0.673038 (1, 68) ~ (3, 65) => 0.103311 (1, 68) ~ (3, 66) => 0.0109832 (1, 68) ~ (3, 67) => 0.0111111 (1, 69) ~ (3, 64) => 0.0443406 (1, 69) ~ (3, 65) => 0.785169 (1, 69) ~ (3, 66) => 0.0659399 (1, 69) ~ (3, 67) => 0.0105862 (1, 70) ~ (3, 65) => 0.0381781 (1, 70) ~ (3, 66) => 0.850399 (1, 70) ~ (3, 67) => 0.0439482 (1, 71) ~ (3, 66) => 0.0283484 (1, 71) ~ (3, 67) => 0.894354 (1, 71) ~ (3, 68) => 0.0300751 (1, 72) ~ (3, 67) => 0.0237847 (1, 72) ~ (3, 68) => 0.923415 ; gap posteriors (1, 0) ~ (3, -1) => 0.00460368 (1, 1) ~ (3, -1) => 0.00960892 (1, 2) ~ (3, -1) => 0.0149716 (1, 3) ~ (3, -1) => 0.0185144 (1, 4) ~ (3, -1) => 0.0211734 (1, 5) ~ (3, -1) => 0.0235199 (1, 6) ~ (3, -1) => 0.0272967 (1, 7) ~ (3, -1) => 0.0207204 (1, 8) ~ (3, -1) => 0.0273939 (1, 9) ~ (3, -1) => 0.0339053 (1, 10) ~ (3, -1) => 0.0303934 (1, 11) ~ (3, -1) => 0.052189 (1, 12) ~ (3, -1) => 0.0790636 (1, 13) ~ (3, -1) => 0.103795 (1, 14) ~ (3, -1) => 0.113794 (1, 15) ~ (3, -1) => 0.123195 (1, 16) ~ (3, -1) => 0.121801 (1, 17) ~ (3, -1) => 0.134134 (1, 18) ~ (3, -1) => 0.173462 (1, 19) ~ (3, -1) => 0.250156 (1, 20) ~ (3, -1) => 0.249512 (1, 21) ~ (3, -1) => 0.244104 (1, 22) ~ (3, -1) => 0.155526 (1, 23) ~ (3, -1) => 0.124173 (1, 24) ~ (3, -1) => 0.110728 (1, 25) ~ (3, -1) => 0.12804 (1, 26) ~ (3, -1) => 0.107004 (1, 27) ~ (3, -1) => 0.10777 (1, 28) ~ (3, -1) => 0.145583 (1, 29) ~ (3, -1) => 0.128967 (1, 30) ~ (3, -1) => 0.14423 (1, 31) ~ (3, -1) => 0.0953625 (1, 32) ~ (3, -1) => 0.0705453 (1, 33) ~ (3, -1) => 0.0787321 (1, 34) ~ (3, -1) => 0.0802766 (1, 35) ~ (3, -1) => 0.0852045 (1, 36) ~ (3, -1) => 0.0952369 (1, 37) ~ (3, -1) => 0.10418 (1, 38) ~ (3, -1) => 0.10759 (1, 39) ~ (3, -1) => 0.0890398 (1, 40) ~ (3, -1) => 0.0820279 (1, 41) ~ (3, -1) => 0.0669413 (1, 42) ~ (3, -1) => 0.072714 (1, 43) ~ (3, -1) => 0.0832253 (1, 44) ~ (3, -1) => 0.101272 (1, 45) ~ (3, -1) => 0.0933826 (1, 46) ~ (3, -1) => 0.0851695 (1, 47) ~ (3, -1) => 0.0827143 (1, 48) ~ (3, -1) => 0.0849315 (1, 49) ~ (3, -1) => 0.0959448 (1, 50) ~ (3, -1) => 0.149604 (1, 51) ~ (3, -1) => 0.146325 (1, 52) ~ (3, -1) => 0.161991 (1, 53) ~ (3, -1) => 0.159486 (1, 54) ~ (3, -1) => 0.13579 (1, 55) ~ (3, -1) => 0.104543 (1, 56) ~ (3, -1) => 0.0935837 (1, 57) ~ (3, -1) => 0.105371 (1, 58) ~ (3, -1) => 0.0889355 (1, 59) ~ (3, -1) => 0.0750498 (1, 60) ~ (3, -1) => 0.0639688 (1, 61) ~ (3, -1) => 0.0619684 (1, 62) ~ (3, -1) => 0.0672282 (1, 63) ~ (3, -1) => 0.103096 (1, 64) ~ (3, -1) => 0.113289 (1, 65) ~ (3, -1) => 0.0968023 (1, 66) ~ (3, -1) => 0.0879686 (1, 67) ~ (3, -1) => 0.0898454 (1, 68) ~ (3, -1) => 0.15313 (1, 69) ~ (3, -1) => 0.0939643 (1, 70) ~ (3, -1) => 0.0674745 (1, 71) ~ (3, -1) => 0.047223 (1, 72) ~ (3, -1) => 0.0528007 (1, -1) ~ (3, 0) => 0.00460368 (1, -1) ~ (3, 1) => 0.00960892 (1, -1) ~ (3, 2) => 0.0149716 (1, -1) ~ (3, 3) => 0.0185144 (1, -1) ~ (3, 4) => 0.00961064 (1, -1) ~ (3, 5) => 0.0099584 (1, -1) ~ (3, 6) => 0.0108979 (1, -1) ~ (3, 7) => 0.0132788 (1, -1) ~ (3, 8) => 0.0197689 (1, -1) ~ (3, 9) => 0.0271701 (1, -1) ~ (3, 10) => 0.0356849 (1, -1) ~ (3, 11) => 0.0217885 (1, -1) ~ (3, 12) => 0.0198375 (1, -1) ~ (3, 13) => 0.0187054 (1, -1) ~ (3, 14) => 0.0325754 (1, -1) ~ (3, 15) => 0.0252975 (1, -1) ~ (3, 16) => 0.0232991 (1, -1) ~ (3, 17) => 0.0426747 (1, -1) ~ (3, 18) => 0.0415947 (1, -1) ~ (3, 19) => 0.0559758 (1, -1) ~ (3, 20) => 0.0651271 (1, -1) ~ (3, 21) => 0.0573729 (1, -1) ~ (3, 22) => 0.0458691 (1, -1) ~ (3, 23) => 0.0407588 (1, -1) ~ (3, 24) => 0.0482111 (1, -1) ~ (3, 25) => 0.050998 (1, -1) ~ (3, 26) => 0.0424293 (1, -1) ~ (3, 27) => 0.043361 (1, -1) ~ (3, 28) => 0.0428509 (1, -1) ~ (3, 29) => 0.0614567 (1, -1) ~ (3, 30) => 0.058014 (1, -1) ~ (3, 31) => 0.0561184 (1, -1) ~ (3, 32) => 0.0916308 (1, -1) ~ (3, 33) => 0.0663138 (1, -1) ~ (3, 34) => 0.0492484 (1, -1) ~ (3, 35) => 0.0514725 (1, -1) ~ (3, 36) => 0.0455687 (1, -1) ~ (3, 37) => 0.057942 (1, -1) ~ (3, 38) => 0.0585302 (1, -1) ~ (3, 39) => 0.0463716 (1, -1) ~ (3, 40) => 0.0464333 (1, -1) ~ (3, 41) => 0.0528705 (1, -1) ~ (3, 42) => 0.0577614 (1, -1) ~ (3, 43) => 0.0515314 (1, -1) ~ (3, 44) => 0.0657357 (1, -1) ~ (3, 45) => 0.054863 (1, -1) ~ (3, 46) => 0.0714867 (1, -1) ~ (3, 47) => 0.0523624 (1, -1) ~ (3, 48) => 0.0568473 (1, -1) ~ (3, 49) => 0.052651 (1, -1) ~ (3, 50) => 0.051819 (1, -1) ~ (3, 51) => 0.0599482 (1, -1) ~ (3, 52) => 0.0519298 (1, -1) ~ (3, 53) => 0.0441015 (1, -1) ~ (3, 54) => 0.0447369 (1, -1) ~ (3, 55) => 0.0583776 (1, -1) ~ (3, 56) => 0.056406 (1, -1) ~ (3, 57) => 0.0446942 (1, -1) ~ (3, 58) => 0.0532994 (1, -1) ~ (3, 59) => 0.050281 (1, -1) ~ (3, 60) => 0.0735643 (1, -1) ~ (3, 61) => 0.0515588 (1, -1) ~ (3, 62) => 0.04253 (1, -1) ~ (3, 63) => 0.043253 (1, -1) ~ (3, 64) => 0.0484475 (1, -1) ~ (3, 65) => 0.0377892 (1, -1) ~ (3, 66) => 0.0297902 (1, -1) ~ (3, 67) => 0.0162162 (1, -1) ~ (3, 68) => 0.0465104 ; Sparse posterior probability matrix for sequences 1 and 4 ; Format is: ; (1, position_1) ~ (4, position_2) => prob ; which means that (1, position_1) is aligned to (4, position_2) with probability prob. ; (1, position_1) ~ (4, -1) => prob ; means that (1, position_1) is aligned to a gap in 4 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (1, 0) ~ (4, 0) => 0.9997 (1, 1) ~ (4, 1) => 0.998453 (1, 2) ~ (4, 2) => 0.994036 (1, 3) ~ (4, 3) => 0.990408 (1, 4) ~ (4, 4) => 0.988165 (1, 5) ~ (4, 5) => 0.986209 (1, 6) ~ (4, 6) => 0.982967 (1, 6) ~ (4, 7) => 0.0100327 (1, 7) ~ (4, 7) => 0.978678 (1, 7) ~ (4, 8) => 0.0119843 (1, 8) ~ (4, 8) => 0.976071 (1, 8) ~ (4, 9) => 0.0141077 (1, 9) ~ (4, 9) => 0.973414 (1, 9) ~ (4, 10) => 0.0162018 (1, 10) ~ (4, 10) => 0.969108 (1, 10) ~ (4, 11) => 0.0152438 (1, 11) ~ (4, 11) => 0.972431 (1, 11) ~ (4, 12) => 0.012889 (1, 12) ~ (4, 12) => 0.976003 (1, 13) ~ (4, 13) => 0.984501 (1, 14) ~ (4, 14) => 0.990905 (1, 15) ~ (4, 15) => 0.997242 (1, 16) ~ (4, 16) => 0.997814 (1, 17) ~ (4, 17) => 0.997782 (1, 18) ~ (4, 18) => 0.995086 (1, 19) ~ (4, 19) => 0.991604 (1, 20) ~ (4, 20) => 0.911543 (1, 21) ~ (4, 20) => 0.081885 (1, 21) ~ (4, 21) => 0.830548 (1, 22) ~ (4, 21) => 0.157179 (1, 22) ~ (4, 22) => 0.785469 (1, 22) ~ (4, 23) => 0.0137291 (1, 23) ~ (4, 22) => 0.18888 (1, 23) ~ (4, 23) => 0.0844835 (1, 23) ~ (4, 24) => 0.0231893 (1, 24) ~ (4, 23) => 0.879762 (1, 24) ~ (4, 24) => 0.0510101 (1, 24) ~ (4, 25) => 0.0155857 (1, 25) ~ (4, 24) => 0.914978 (1, 25) ~ (4, 25) => 0.0301128 (1, 26) ~ (4, 25) => 0.941345 (1, 26) ~ (4, 26) => 0.0216416 (1, 27) ~ (4, 26) => 0.956951 (1, 27) ~ (4, 27) => 0.0115729 (1, 28) ~ (4, 26) => 0.0109663 (1, 28) ~ (4, 27) => 0.966065 (1, 29) ~ (4, 27) => 0.0159347 (1, 29) ~ (4, 28) => 0.974505 (1, 30) ~ (4, 28) => 0.0161725 (1, 30) ~ (4, 29) => 0.97449 (1, 31) ~ (4, 29) => 0.0190305 (1, 31) ~ (4, 30) => 0.977209 (1, 32) ~ (4, 30) => 0.0194295 (1, 32) ~ (4, 31) => 0.976426 (1, 33) ~ (4, 31) => 0.0191771 (1, 33) ~ (4, 32) => 0.975558 (1, 34) ~ (4, 32) => 0.0195985 (1, 34) ~ (4, 33) => 0.976658 (1, 35) ~ (4, 33) => 0.0175109 (1, 35) ~ (4, 34) => 0.98082 (1, 36) ~ (4, 34) => 0.01437 (1, 36) ~ (4, 35) => 0.984299 (1, 37) ~ (4, 35) => 0.0109015 (1, 37) ~ (4, 36) => 0.985344 (1, 38) ~ (4, 36) => 0.0119291 (1, 38) ~ (4, 37) => 0.982136 (1, 39) ~ (4, 37) => 0.0136494 (1, 39) ~ (4, 38) => 0.979989 (1, 40) ~ (4, 38) => 0.0144306 (1, 40) ~ (4, 39) => 0.977198 (1, 41) ~ (4, 39) => 0.01581 (1, 41) ~ (4, 40) => 0.947786 (1, 42) ~ (4, 40) => 0.0428728 (1, 42) ~ (4, 41) => 0.917917 (1, 43) ~ (4, 41) => 0.0696512 (1, 43) ~ (4, 42) => 0.880536 (1, 43) ~ (4, 43) => 0.0110859 (1, 44) ~ (4, 42) => 0.104454 (1, 44) ~ (4, 43) => 0.851407 (1, 44) ~ (4, 44) => 0.0123777 (1, 45) ~ (4, 43) => 0.131508 (1, 45) ~ (4, 44) => 0.814437 (1, 45) ~ (4, 45) => 0.0125995 (1, 46) ~ (4, 44) => 0.166203 (1, 46) ~ (4, 45) => 0.755124 (1, 46) ~ (4, 46) => 0.0124186 (1, 47) ~ (4, 45) => 0.224856 (1, 47) ~ (4, 46) => 0.69205 (1, 47) ~ (4, 47) => 0.0106718 (1, 48) ~ (4, 46) => 0.287558 (1, 48) ~ (4, 47) => 0.591345 (1, 49) ~ (4, 47) => 0.390257 (1, 49) ~ (4, 48) => 0.534056 (1, 50) ~ (4, 48) => 0.451092 (1, 50) ~ (4, 49) => 0.43122 (1, 51) ~ (4, 49) => 0.555362 (1, 51) ~ (4, 50) => 0.328075 (1, 51) ~ (4, 51) => 0.010077 (1, 52) ~ (4, 50) => 0.65686 (1, 52) ~ (4, 51) => 0.22068 (1, 52) ~ (4, 52) => 0.0147259 (1, 53) ~ (4, 51) => 0.758032 (1, 53) ~ (4, 52) => 0.161636 (1, 54) ~ (4, 52) => 0.815324 (1, 54) ~ (4, 53) => 0.10525 (1, 55) ~ (4, 53) => 0.883556 (1, 55) ~ (4, 54) => 0.0684677 (1, 56) ~ (4, 54) => 0.92492 (1, 56) ~ (4, 55) => 0.0400275 (1, 57) ~ (4, 55) => 0.955228 (1, 57) ~ (4, 56) => 0.0105455 (1, 58) ~ (4, 56) => 0.984308 (1, 58) ~ (4, 57) => 0.0105717 (1, 59) ~ (4, 57) => 0.983824 (1, 59) ~ (4, 58) => 0.010638 (1, 60) ~ (4, 58) => 0.983863 (1, 60) ~ (4, 59) => 0.0107324 (1, 61) ~ (4, 59) => 0.983473 (1, 61) ~ (4, 60) => 0.0107019 (1, 62) ~ (4, 60) => 0.982547 (1, 62) ~ (4, 61) => 0.0113025 (1, 63) ~ (4, 61) => 0.982421 (1, 63) ~ (4, 62) => 0.0119239 (1, 64) ~ (4, 62) => 0.982245 (1, 64) ~ (4, 63) => 0.0113742 (1, 65) ~ (4, 63) => 0.984131 (1, 66) ~ (4, 64) => 0.986408 (1, 67) ~ (4, 65) => 0.98779 (1, 68) ~ (4, 66) => 0.989351 (1, 69) ~ (4, 67) => 0.993642 (1, 70) ~ (4, 68) => 0.996821 (1, 71) ~ (4, 69) => 0.99803 (1, 72) ~ (4, 70) => 0.998733 ; gap posteriors (1, 0) ~ (4, -1) => 0.000300169 (1, 1) ~ (4, -1) => 0.00154728 (1, 2) ~ (4, -1) => 0.00596356 (1, 3) ~ (4, -1) => 0.00959235 (1, 4) ~ (4, -1) => 0.0118346 (1, 5) ~ (4, -1) => 0.0137908 (1, 6) ~ (4, -1) => 0.00700056 (1, 7) ~ (4, -1) => 0.00933819 (1, 8) ~ (4, -1) => 0.00982151 (1, 9) ~ (4, -1) => 0.0103839 (1, 10) ~ (4, -1) => 0.0156481 (1, 11) ~ (4, -1) => 0.0146795 (1, 12) ~ (4, -1) => 0.0239967 (1, 13) ~ (4, -1) => 0.0154991 (1, 14) ~ (4, -1) => 0.00909489 (1, 15) ~ (4, -1) => 0.00275785 (1, 16) ~ (4, -1) => 0.00218636 (1, 17) ~ (4, -1) => 0.00221789 (1, 18) ~ (4, -1) => 0.00491434 (1, 19) ~ (4, -1) => 0.00839573 (1, 20) ~ (4, -1) => 0.0884575 (1, 21) ~ (4, -1) => 0.0875668 (1, 22) ~ (4, -1) => 0.0436231 (1, 23) ~ (4, -1) => 0.703447 (1, 24) ~ (4, -1) => 0.053642 (1, 25) ~ (4, -1) => 0.0549091 (1, 26) ~ (4, -1) => 0.0370133 (1, 27) ~ (4, -1) => 0.0314757 (1, 28) ~ (4, -1) => 0.0229687 (1, 29) ~ (4, -1) => 0.00956059 (1, 30) ~ (4, -1) => 0.00933713 (1, 31) ~ (4, -1) => 0.00376034 (1, 32) ~ (4, -1) => 0.00414461 (1, 33) ~ (4, -1) => 0.00526446 (1, 34) ~ (4, -1) => 0.00374305 (1, 35) ~ (4, -1) => 0.00166941 (1, 36) ~ (4, -1) => 0.00133061 (1, 37) ~ (4, -1) => 0.00375503 (1, 38) ~ (4, -1) => 0.00593489 (1, 39) ~ (4, -1) => 0.00636154 (1, 40) ~ (4, -1) => 0.00837189 (1, 41) ~ (4, -1) => 0.0364044 (1, 42) ~ (4, -1) => 0.0392098 (1, 43) ~ (4, -1) => 0.0387269 (1, 44) ~ (4, -1) => 0.0317611 (1, 45) ~ (4, -1) => 0.0414552 (1, 46) ~ (4, -1) => 0.0662551 (1, 47) ~ (4, -1) => 0.0724223 (1, 48) ~ (4, -1) => 0.121097 (1, 49) ~ (4, -1) => 0.0756867 (1, 50) ~ (4, -1) => 0.117688 (1, 51) ~ (4, -1) => 0.106486 (1, 52) ~ (4, -1) => 0.107734 (1, 53) ~ (4, -1) => 0.0803325 (1, 54) ~ (4, -1) => 0.0794263 (1, 55) ~ (4, -1) => 0.0479762 (1, 56) ~ (4, -1) => 0.035052 (1, 57) ~ (4, -1) => 0.0342262 (1, 58) ~ (4, -1) => 0.00512001 (1, 59) ~ (4, -1) => 0.005538 (1, 60) ~ (4, -1) => 0.00540488 (1, 61) ~ (4, -1) => 0.00582494 (1, 62) ~ (4, -1) => 0.00615006 (1, 63) ~ (4, -1) => 0.00565557 (1, 64) ~ (4, -1) => 0.00638068 (1, 65) ~ (4, -1) => 0.015869 (1, 66) ~ (4, -1) => 0.0135918 (1, 67) ~ (4, -1) => 0.0122096 (1, 68) ~ (4, -1) => 0.0106486 (1, 69) ~ (4, -1) => 0.00635767 (1, 70) ~ (4, -1) => 0.00317913 (1, 71) ~ (4, -1) => 0.00197041 (1, 72) ~ (4, -1) => 0.00126714 (1, -1) ~ (4, 0) => 0.000300169 (1, -1) ~ (4, 1) => 0.00154728 (1, -1) ~ (4, 2) => 0.00596356 (1, -1) ~ (4, 3) => 0.00959235 (1, -1) ~ (4, 4) => 0.0118346 (1, -1) ~ (4, 5) => 0.0137908 (1, -1) ~ (4, 6) => 0.0170333 (1, -1) ~ (4, 7) => 0.0112898 (1, -1) ~ (4, 8) => 0.0119449 (1, -1) ~ (4, 9) => 0.0124781 (1, -1) ~ (4, 10) => 0.01469 (1, -1) ~ (4, 11) => 0.0123247 (1, -1) ~ (4, 12) => 0.0111076 (1, -1) ~ (4, 13) => 0.0154991 (1, -1) ~ (4, 14) => 0.00909489 (1, -1) ~ (4, 15) => 0.00275785 (1, -1) ~ (4, 16) => 0.00218636 (1, -1) ~ (4, 17) => 0.00221789 (1, -1) ~ (4, 18) => 0.00491434 (1, -1) ~ (4, 19) => 0.00839573 (1, -1) ~ (4, 20) => 0.00657246 (1, -1) ~ (4, 21) => 0.0122733 (1, -1) ~ (4, 22) => 0.0256506 (1, -1) ~ (4, 23) => 0.0220253 (1, -1) ~ (4, 24) => 0.0108224 (1, -1) ~ (4, 25) => 0.0129564 (1, -1) ~ (4, 26) => 0.0104407 (1, -1) ~ (4, 27) => 0.00642735 (1, -1) ~ (4, 28) => 0.00932278 (1, -1) ~ (4, 29) => 0.00647917 (1, -1) ~ (4, 30) => 0.00336128 (1, -1) ~ (4, 31) => 0.00439699 (1, -1) ~ (4, 32) => 0.00484306 (1, -1) ~ (4, 33) => 0.00583074 (1, -1) ~ (4, 34) => 0.00481027 (1, -1) ~ (4, 35) => 0.00479911 (1, -1) ~ (4, 36) => 0.00272742 (1, -1) ~ (4, 37) => 0.00421452 (1, -1) ~ (4, 38) => 0.00558037 (1, -1) ~ (4, 39) => 0.00699246 (1, -1) ~ (4, 40) => 0.00934161 (1, -1) ~ (4, 41) => 0.0124315 (1, -1) ~ (4, 42) => 0.0150102 (1, -1) ~ (4, 43) => 0.00599855 (1, -1) ~ (4, 44) => 0.0069824 (1, -1) ~ (4, 45) => 0.00742133 (1, -1) ~ (4, 46) => 0.00797325 (1, -1) ~ (4, 47) => 0.00772557 (1, -1) ~ (4, 48) => 0.0148522 (1, -1) ~ (4, 49) => 0.0134176 (1, -1) ~ (4, 50) => 0.0150655 (1, -1) ~ (4, 51) => 0.0112107 (1, -1) ~ (4, 52) => 0.00831461 (1, -1) ~ (4, 53) => 0.011194 (1, -1) ~ (4, 54) => 0.00661182 (1, -1) ~ (4, 55) => 0.00474423 (1, -1) ~ (4, 56) => 0.00514627 (1, -1) ~ (4, 57) => 0.00560421 (1, -1) ~ (4, 58) => 0.0054993 (1, -1) ~ (4, 59) => 0.00579447 (1, -1) ~ (4, 60) => 0.00675058 (1, -1) ~ (4, 61) => 0.00627697 (1, -1) ~ (4, 62) => 0.005831 (1, -1) ~ (4, 63) => 0.00449479 (1, -1) ~ (4, 64) => 0.0135918 (1, -1) ~ (4, 65) => 0.0122096 (1, -1) ~ (4, 66) => 0.0106486 (1, -1) ~ (4, 67) => 0.00635767 (1, -1) ~ (4, 68) => 0.00317913 (1, -1) ~ (4, 69) => 0.00197041 (1, -1) ~ (4, 70) => 0.00126714 ; Sparse posterior probability matrix for sequences 2 and 3 ; Format is: ; (2, position_1) ~ (3, position_2) => prob ; which means that (2, position_1) is aligned to (3, position_2) with probability prob. ; (2, position_1) ~ (3, -1) => prob ; means that (2, position_1) is aligned to a gap in 3 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (2, 0) ~ (3, 0) => 0.999947 (2, 1) ~ (3, 1) => 0.999575 (2, 2) ~ (3, 2) => 0.999214 (2, 3) ~ (3, 3) => 0.99887 (2, 4) ~ (3, 4) => 0.99831 (2, 5) ~ (3, 5) => 0.998182 (2, 6) ~ (3, 6) => 0.99829 (2, 7) ~ (3, 7) => 0.998429 (2, 8) ~ (3, 8) => 0.998767 (2, 9) ~ (3, 9) => 0.999066 (2, 10) ~ (3, 10) => 0.999117 (2, 11) ~ (3, 11) => 0.998802 (2, 12) ~ (3, 12) => 0.998399 (2, 13) ~ (3, 13) => 0.998518 (2, 14) ~ (3, 14) => 0.998869 (2, 15) ~ (3, 15) => 0.999238 (2, 16) ~ (3, 16) => 0.999264 (2, 17) ~ (3, 17) => 0.999154 (2, 18) ~ (3, 18) => 0.999025 (2, 19) ~ (3, 19) => 0.99917 (2, 20) ~ (3, 20) => 0.999306 (2, 21) ~ (3, 21) => 0.999472 (2, 22) ~ (3, 22) => 0.999481 (2, 23) ~ (3, 23) => 0.999569 (2, 24) ~ (3, 24) => 0.999641 (2, 25) ~ (3, 25) => 0.999579 (2, 26) ~ (3, 26) => 0.999351 (2, 27) ~ (3, 27) => 0.998136 (2, 28) ~ (3, 28) => 0.996861 (2, 29) ~ (3, 29) => 0.992417 (2, 30) ~ (3, 30) => 0.987346 (2, 31) ~ (3, 31) => 0.975394 (2, 31) ~ (3, 38) => 0.015923 (2, 32) ~ (3, 32) => 0.973891 (2, 32) ~ (3, 39) => 0.0176899 (2, 33) ~ (3, 33) => 0.973302 (2, 33) ~ (3, 40) => 0.0185581 (2, 34) ~ (3, 34) => 0.971226 (2, 34) ~ (3, 41) => 0.0198995 (2, 35) ~ (3, 35) => 0.969745 (2, 35) ~ (3, 42) => 0.0210121 (2, 36) ~ (3, 36) => 0.967632 (2, 36) ~ (3, 43) => 0.0217485 (2, 37) ~ (3, 37) => 0.964778 (2, 37) ~ (3, 44) => 0.0223772 (2, 38) ~ (3, 38) => 0.953399 (2, 38) ~ (3, 45) => 0.0214184 (2, 39) ~ (3, 39) => 0.93942 (2, 39) ~ (3, 46) => 0.0200209 (2, 39) ~ (3, 49) => 0.0161367 (2, 40) ~ (3, 40) => 0.918972 (2, 40) ~ (3, 47) => 0.0203095 (2, 40) ~ (3, 50) => 0.0222161 (2, 41) ~ (3, 41) => 0.899034 (2, 41) ~ (3, 44) => 0.0102455 (2, 41) ~ (3, 45) => 0.0119202 (2, 41) ~ (3, 48) => 0.019201 (2, 41) ~ (3, 51) => 0.0290967 (2, 42) ~ (3, 42) => 0.803096 (2, 42) ~ (3, 45) => 0.0837254 (2, 42) ~ (3, 46) => 0.0143956 (2, 42) ~ (3, 49) => 0.0166466 (2, 42) ~ (3, 50) => 0.0127695 (2, 42) ~ (3, 52) => 0.035725 (2, 43) ~ (3, 43) => 0.703701 (2, 43) ~ (3, 46) => 0.157502 (2, 43) ~ (3, 47) => 0.020418 (2, 43) ~ (3, 50) => 0.0149749 (2, 43) ~ (3, 51) => 0.0245522 (2, 43) ~ (3, 53) => 0.0401055 (2, 44) ~ (3, 44) => 0.57052 (2, 44) ~ (3, 47) => 0.279577 (2, 44) ~ (3, 48) => 0.0221508 (2, 44) ~ (3, 51) => 0.0140063 (2, 44) ~ (3, 52) => 0.0338077 (2, 44) ~ (3, 54) => 0.042243 (2, 45) ~ (3, 45) => 0.527121 (2, 45) ~ (3, 48) => 0.321751 (2, 45) ~ (3, 49) => 0.0217577 (2, 45) ~ (3, 52) => 0.0125016 (2, 45) ~ (3, 53) => 0.0372461 (2, 45) ~ (3, 55) => 0.0441308 (2, 46) ~ (3, 46) => 0.483585 (2, 46) ~ (3, 49) => 0.363802 (2, 46) ~ (3, 50) => 0.0227212 (2, 46) ~ (3, 54) => 0.0389651 (2, 46) ~ (3, 56) => 0.0453491 (2, 47) ~ (3, 47) => 0.429915 (2, 47) ~ (3, 50) => 0.384198 (2, 47) ~ (3, 51) => 0.0191817 (2, 47) ~ (3, 53) => 0.0319531 (2, 47) ~ (3, 55) => 0.0377027 (2, 47) ~ (3, 57) => 0.0444744 (2, 48) ~ (3, 48) => 0.393476 (2, 48) ~ (3, 51) => 0.385334 (2, 48) ~ (3, 52) => 0.0188001 (2, 48) ~ (3, 53) => 0.019089 (2, 48) ~ (3, 54) => 0.0562167 (2, 48) ~ (3, 56) => 0.0380848 (2, 48) ~ (3, 58) => 0.0425972 (2, 49) ~ (3, 49) => 0.351502 (2, 49) ~ (3, 52) => 0.384086 (2, 49) ~ (3, 53) => 0.0152873 (2, 49) ~ (3, 54) => 0.0242159 (2, 49) ~ (3, 55) => 0.091456 (2, 49) ~ (3, 57) => 0.0412649 (2, 49) ~ (3, 59) => 0.0407586 (2, 50) ~ (3, 50) => 0.211871 (2, 50) ~ (3, 53) => 0.392184 (2, 50) ~ (3, 54) => 0.010663 (2, 50) ~ (3, 55) => 0.0236556 (2, 50) ~ (3, 56) => 0.227295 (2, 50) ~ (3, 58) => 0.0429079 (2, 50) ~ (3, 60) => 0.03873 (2, 51) ~ (3, 51) => 0.0266461 (2, 51) ~ (3, 54) => 0.359766 (2, 51) ~ (3, 56) => 0.0140821 (2, 51) ~ (3, 57) => 0.48286 (2, 51) ~ (3, 59) => 0.0437669 (2, 51) ~ (3, 61) => 0.0315115 (2, 52) ~ (3, 52) => 0.0222039 (2, 52) ~ (3, 55) => 0.316429 (2, 52) ~ (3, 58) => 0.547264 (2, 52) ~ (3, 60) => 0.0418991 (2, 52) ~ (3, 62) => 0.023413 (2, 53) ~ (3, 53) => 0.0176828 (2, 53) ~ (3, 56) => 0.26957 (2, 53) ~ (3, 59) => 0.601712 (2, 53) ~ (3, 61) => 0.0324992 (2, 54) ~ (3, 54) => 0.0158207 (2, 54) ~ (3, 57) => 0.25143 (2, 54) ~ (3, 60) => 0.624199 (2, 54) ~ (3, 62) => 0.0226157 (2, 55) ~ (3, 58) => 0.172852 (2, 55) ~ (3, 61) => 0.727637 (2, 55) ~ (3, 63) => 0.0129581 (2, 56) ~ (3, 59) => 0.156297 (2, 56) ~ (3, 61) => 0.0112923 (2, 56) ~ (3, 62) => 0.765054 (2, 56) ~ (3, 64) => 0.0101235 (2, 57) ~ (3, 60) => 0.112502 (2, 57) ~ (3, 62) => 0.0111839 (2, 57) ~ (3, 63) => 0.836895 (2, 58) ~ (3, 61) => 0.0697027 (2, 58) ~ (3, 64) => 0.892758 (2, 59) ~ (3, 62) => 0.0478014 (2, 59) ~ (3, 65) => 0.923074 (2, 60) ~ (3, 63) => 0.026092 (2, 60) ~ (3, 66) => 0.951758 (2, 61) ~ (3, 67) => 0.982544 (2, 62) ~ (3, 68) => 0.98509 ; gap posteriors (2, 0) ~ (3, -1) => 0.0001 (2, 1) ~ (3, -1) => 0.000425398 (2, 2) ~ (3, -1) => 0.000786066 (2, 3) ~ (3, -1) => 0.00112969 (2, 4) ~ (3, -1) => 0.00168991 (2, 5) ~ (3, -1) => 0.00181818 (2, 6) ~ (3, -1) => 0.00170982 (2, 7) ~ (3, -1) => 0.00157106 (2, 8) ~ (3, -1) => 0.0012331 (2, 9) ~ (3, -1) => 0.000933766 (2, 10) ~ (3, -1) => 0.000883043 (2, 11) ~ (3, -1) => 0.00119829 (2, 12) ~ (3, -1) => 0.0016014 (2, 13) ~ (3, -1) => 0.00148249 (2, 14) ~ (3, -1) => 0.00113052 (2, 15) ~ (3, -1) => 0.000762403 (2, 16) ~ (3, -1) => 0.000735939 (2, 17) ~ (3, -1) => 0.000846386 (2, 18) ~ (3, -1) => 0.000974774 (2, 19) ~ (3, -1) => 0.000830472 (2, 20) ~ (3, -1) => 0.000693679 (2, 21) ~ (3, -1) => 0.000527978 (2, 22) ~ (3, -1) => 0.00051868 (2, 23) ~ (3, -1) => 0.000430584 (2, 24) ~ (3, -1) => 0.000358582 (2, 25) ~ (3, -1) => 0.000420928 (2, 26) ~ (3, -1) => 0.000649154 (2, 27) ~ (3, -1) => 0.00186402 (2, 28) ~ (3, -1) => 0.0031389 (2, 29) ~ (3, -1) => 0.00758296 (2, 30) ~ (3, -1) => 0.0126536 (2, 31) ~ (3, -1) => 0.00868261 (2, 32) ~ (3, -1) => 0.00841863 (2, 33) ~ (3, -1) => 0.00813985 (2, 34) ~ (3, -1) => 0.00887471 (2, 35) ~ (3, -1) => 0.00924337 (2, 36) ~ (3, -1) => 0.0106191 (2, 37) ~ (3, -1) => 0.0128444 (2, 38) ~ (3, -1) => 0.0251826 (2, 39) ~ (3, -1) => 0.0244229 (2, 40) ~ (3, -1) => 0.0385019 (2, 41) ~ (3, -1) => 0.0305023 (2, 42) ~ (3, -1) => 0.0336419 (2, 43) ~ (3, -1) => 0.0387467 (2, 44) ~ (3, -1) => 0.0376953 (2, 45) ~ (3, -1) => 0.035491 (2, 46) ~ (3, -1) => 0.0455778 (2, 47) ~ (3, -1) => 0.0525756 (2, 48) ~ (3, -1) => 0.0464022 (2, 49) ~ (3, -1) => 0.0514287 (2, 50) ~ (3, -1) => 0.0526932 (2, 51) ~ (3, -1) => 0.041367 (2, 52) ~ (3, -1) => 0.0487913 (2, 53) ~ (3, -1) => 0.0785365 (2, 54) ~ (3, -1) => 0.0859343 (2, 55) ~ (3, -1) => 0.0865522 (2, 56) ~ (3, -1) => 0.0572338 (2, 57) ~ (3, -1) => 0.0394192 (2, 58) ~ (3, -1) => 0.037539 (2, 59) ~ (3, -1) => 0.0291246 (2, 60) ~ (3, -1) => 0.0221495 (2, 61) ~ (3, -1) => 0.0174562 (2, 62) ~ (3, -1) => 0.0149099 (2, -1) ~ (3, 0) => 0.0001 (2, -1) ~ (3, 1) => 0.000425398 (2, -1) ~ (3, 2) => 0.000786066 (2, -1) ~ (3, 3) => 0.00112969 (2, -1) ~ (3, 4) => 0.00168991 (2, -1) ~ (3, 5) => 0.00181818 (2, -1) ~ (3, 6) => 0.00170982 (2, -1) ~ (3, 7) => 0.00157106 (2, -1) ~ (3, 8) => 0.0012331 (2, -1) ~ (3, 9) => 0.000933766 (2, -1) ~ (3, 10) => 0.000883043 (2, -1) ~ (3, 11) => 0.00119829 (2, -1) ~ (3, 12) => 0.0016014 (2, -1) ~ (3, 13) => 0.00148249 (2, -1) ~ (3, 14) => 0.00113052 (2, -1) ~ (3, 15) => 0.000762403 (2, -1) ~ (3, 16) => 0.000735939 (2, -1) ~ (3, 17) => 0.000846386 (2, -1) ~ (3, 18) => 0.000974774 (2, -1) ~ (3, 19) => 0.000830472 (2, -1) ~ (3, 20) => 0.000693679 (2, -1) ~ (3, 21) => 0.000527978 (2, -1) ~ (3, 22) => 0.00051868 (2, -1) ~ (3, 23) => 0.000430584 (2, -1) ~ (3, 24) => 0.000358582 (2, -1) ~ (3, 25) => 0.000420928 (2, -1) ~ (3, 26) => 0.000649154 (2, -1) ~ (3, 27) => 0.00186402 (2, -1) ~ (3, 28) => 0.0031389 (2, -1) ~ (3, 29) => 0.00758296 (2, -1) ~ (3, 30) => 0.0126536 (2, -1) ~ (3, 31) => 0.0246056 (2, -1) ~ (3, 32) => 0.0261086 (2, -1) ~ (3, 33) => 0.026698 (2, -1) ~ (3, 34) => 0.0287742 (2, -1) ~ (3, 35) => 0.0302554 (2, -1) ~ (3, 36) => 0.0323676 (2, -1) ~ (3, 37) => 0.0352216 (2, -1) ~ (3, 38) => 0.030678 (2, -1) ~ (3, 39) => 0.0428905 (2, -1) ~ (3, 40) => 0.0624694 (2, -1) ~ (3, 41) => 0.0810661 (2, -1) ~ (3, 42) => 0.175892 (2, -1) ~ (3, 43) => 0.274551 (2, -1) ~ (3, 44) => 0.396857 (2, -1) ~ (3, 45) => 0.355815 (2, -1) ~ (3, 46) => 0.324496 (2, -1) ~ (3, 47) => 0.249781 (2, -1) ~ (3, 48) => 0.243421 (2, -1) ~ (3, 49) => 0.230155 (2, -1) ~ (3, 50) => 0.33125 (2, -1) ~ (3, 51) => 0.501183 (2, -1) ~ (3, 52) => 0.492875 (2, -1) ~ (3, 53) => 0.446452 (2, -1) ~ (3, 54) => 0.452109 (2, -1) ~ (3, 55) => 0.486626 (2, -1) ~ (3, 56) => 0.405619 (2, -1) ~ (3, 57) => 0.17997 (2, -1) ~ (3, 58) => 0.194379 (2, -1) ~ (3, 59) => 0.157466 (2, -1) ~ (3, 60) => 0.18267 (2, -1) ~ (3, 61) => 0.127357 (2, -1) ~ (3, 62) => 0.129932 (2, -1) ~ (3, 63) => 0.124055 (2, -1) ~ (3, 64) => 0.0971181 (2, -1) ~ (3, 65) => 0.076926 (2, -1) ~ (3, 66) => 0.0482416 (2, -1) ~ (3, 67) => 0.0174562 (2, -1) ~ (3, 68) => 0.0149099 ; Sparse posterior probability matrix for sequences 2 and 4 ; Format is: ; (2, position_1) ~ (4, position_2) => prob ; which means that (2, position_1) is aligned to (4, position_2) with probability prob. ; (2, position_1) ~ (4, -1) => prob ; means that (2, position_1) is aligned to a gap in 4 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (2, 0) ~ (4, 0) => 0.998542 (2, 1) ~ (4, 1) => 0.995426 (2, 2) ~ (4, 2) => 0.988666 (2, 3) ~ (4, 3) => 0.9822 (2, 4) ~ (4, 4) => 0.976237 (2, 4) ~ (4, 5) => 0.011716 (2, 5) ~ (4, 5) => 0.970037 (2, 5) ~ (4, 6) => 0.0135695 (2, 6) ~ (4, 6) => 0.969056 (2, 6) ~ (4, 7) => 0.0128288 (2, 7) ~ (4, 7) => 0.967063 (2, 7) ~ (4, 8) => 0.0117285 (2, 8) ~ (4, 8) => 0.961482 (2, 8) ~ (4, 10) => 0.0113458 (2, 9) ~ (4, 9) => 0.945805 (2, 9) ~ (4, 11) => 0.0200771 (2, 10) ~ (4, 10) => 0.917843 (2, 10) ~ (4, 12) => 0.0322421 (2, 11) ~ (4, 11) => 0.898282 (2, 11) ~ (4, 13) => 0.0360191 (2, 12) ~ (4, 12) => 0.875037 (2, 12) ~ (4, 14) => 0.03943 (2, 13) ~ (4, 13) => 0.839135 (2, 13) ~ (4, 15) => 0.0426612 (2, 13) ~ (4, 16) => 0.0126761 (2, 14) ~ (4, 14) => 0.791557 (2, 14) ~ (4, 16) => 0.0512953 (2, 14) ~ (4, 17) => 0.0182511 (2, 15) ~ (4, 15) => 0.752944 (2, 15) ~ (4, 17) => 0.0601359 (2, 15) ~ (4, 18) => 0.0200182 (2, 16) ~ (4, 13) => 0.0143305 (2, 16) ~ (4, 14) => 0.0207263 (2, 16) ~ (4, 16) => 0.626354 (2, 16) ~ (4, 18) => 0.107548 (2, 16) ~ (4, 19) => 0.0164787 (2, 16) ~ (4, 26) => 0.0135834 (2, 17) ~ (4, 14) => 0.0194406 (2, 17) ~ (4, 15) => 0.034932 (2, 17) ~ (4, 17) => 0.488906 (2, 17) ~ (4, 19) => 0.201939 (2, 17) ~ (4, 20) => 0.0127226 (2, 17) ~ (4, 27) => 0.0163895 (2, 18) ~ (4, 15) => 0.0234762 (2, 18) ~ (4, 16) => 0.0780552 (2, 18) ~ (4, 18) => 0.194741 (2, 18) ~ (4, 20) => 0.428106 (2, 18) ~ (4, 21) => 0.0118382 (2, 18) ~ (4, 28) => 0.0185021 (2, 19) ~ (4, 10) => 0.0133417 (2, 19) ~ (4, 13) => 0.0139654 (2, 19) ~ (4, 16) => 0.0487628 (2, 19) ~ (4, 17) => 0.0960511 (2, 19) ~ (4, 19) => 0.118091 (2, 19) ~ (4, 20) => 0.0149224 (2, 19) ~ (4, 21) => 0.464154 (2, 19) ~ (4, 29) => 0.0207406 (2, 20) ~ (4, 11) => 0.0194049 (2, 20) ~ (4, 14) => 0.016594 (2, 20) ~ (4, 17) => 0.0584456 (2, 20) ~ (4, 18) => 0.139877 (2, 20) ~ (4, 20) => 0.0892666 (2, 20) ~ (4, 22) => 0.490776 (2, 20) ~ (4, 30) => 0.0225482 (2, 21) ~ (4, 12) => 0.0283802 (2, 21) ~ (4, 15) => 0.0199346 (2, 21) ~ (4, 18) => 0.0615525 (2, 21) ~ (4, 19) => 0.173024 (2, 21) ~ (4, 21) => 0.0478844 (2, 21) ~ (4, 23) => 0.528753 (2, 21) ~ (4, 31) => 0.0254757 (2, 22) ~ (4, 13) => 0.0395842 (2, 22) ~ (4, 16) => 0.0218912 (2, 22) ~ (4, 19) => 0.0538685 (2, 22) ~ (4, 20) => 0.180307 (2, 22) ~ (4, 22) => 0.0236441 (2, 22) ~ (4, 24) => 0.545339 (2, 22) ~ (4, 32) => 0.0289556 (2, 23) ~ (4, 14) => 0.0456339 (2, 23) ~ (4, 17) => 0.0208566 (2, 23) ~ (4, 20) => 0.0535287 (2, 23) ~ (4, 21) => 0.168727 (2, 23) ~ (4, 23) => 0.010217 (2, 23) ~ (4, 25) => 0.565428 (2, 23) ~ (4, 31) => 0.0102546 (2, 23) ~ (4, 33) => 0.0325792 (2, 24) ~ (4, 15) => 0.0482736 (2, 24) ~ (4, 18) => 0.0218967 (2, 24) ~ (4, 21) => 0.0416151 (2, 24) ~ (4, 22) => 0.157218 (2, 24) ~ (4, 23) => 0.0106472 (2, 24) ~ (4, 26) => 0.588907 (2, 24) ~ (4, 32) => 0.0122367 (2, 24) ~ (4, 34) => 0.0283261 (2, 25) ~ (4, 16) => 0.0499502 (2, 25) ~ (4, 19) => 0.0197446 (2, 25) ~ (4, 22) => 0.0277653 (2, 25) ~ (4, 23) => 0.118998 (2, 25) ~ (4, 27) => 0.62122 (2, 25) ~ (4, 33) => 0.0131312 (2, 25) ~ (4, 34) => 0.0316962 (2, 25) ~ (4, 35) => 0.0298539 (2, 26) ~ (4, 17) => 0.0527431 (2, 26) ~ (4, 20) => 0.0187036 (2, 26) ~ (4, 23) => 0.0206173 (2, 26) ~ (4, 24) => 0.10183 (2, 26) ~ (4, 28) => 0.629162 (2, 26) ~ (4, 34) => 0.0134891 (2, 26) ~ (4, 35) => 0.0435539 (2, 26) ~ (4, 36) => 0.0292252 (2, 27) ~ (4, 18) => 0.0545301 (2, 27) ~ (4, 21) => 0.0165803 (2, 27) ~ (4, 23) => 0.0149166 (2, 27) ~ (4, 24) => 0.0168673 (2, 27) ~ (4, 25) => 0.0685298 (2, 27) ~ (4, 29) => 0.611743 (2, 27) ~ (4, 30) => 0.0193867 (2, 27) ~ (4, 35) => 0.0121248 (2, 27) ~ (4, 36) => 0.0525759 (2, 27) ~ (4, 37) => 0.0312284 (2, 28) ~ (4, 19) => 0.0536277 (2, 28) ~ (4, 22) => 0.0149467 (2, 28) ~ (4, 24) => 0.0165919 (2, 28) ~ (4, 25) => 0.0180463 (2, 28) ~ (4, 26) => 0.0384618 (2, 28) ~ (4, 28) => 0.0159832 (2, 28) ~ (4, 29) => 0.013103 (2, 28) ~ (4, 30) => 0.60593 (2, 28) ~ (4, 31) => 0.0227669 (2, 28) ~ (4, 36) => 0.0144775 (2, 28) ~ (4, 37) => 0.0556122 (2, 28) ~ (4, 38) => 0.0311845 (2, 28) ~ (4, 39) => 0.0107012 (2, 29) ~ (4, 20) => 0.048755 (2, 29) ~ (4, 25) => 0.0264382 (2, 29) ~ (4, 26) => 0.0184859 (2, 29) ~ (4, 28) => 0.0110817 (2, 29) ~ (4, 29) => 0.0453943 (2, 29) ~ (4, 30) => 0.0174069 (2, 29) ~ (4, 31) => 0.572724 (2, 29) ~ (4, 32) => 0.0257223 (2, 29) ~ (4, 37) => 0.015401 (2, 29) ~ (4, 38) => 0.0567127 (2, 29) ~ (4, 39) => 0.0286675 (2, 29) ~ (4, 40) => 0.0111553 (2, 30) ~ (4, 21) => 0.0412323 (2, 30) ~ (4, 23) => 0.0151097 (2, 30) ~ (4, 26) => 0.0289787 (2, 30) ~ (4, 27) => 0.0123347 (2, 30) ~ (4, 29) => 0.0321478 (2, 30) ~ (4, 30) => 0.0536235 (2, 30) ~ (4, 31) => 0.0235189 (2, 30) ~ (4, 32) => 0.40967 (2, 30) ~ (4, 33) => 0.0225321 (2, 30) ~ (4, 38) => 0.0181489 (2, 30) ~ (4, 39) => 0.061002 (2, 30) ~ (4, 40) => 0.0271024 (2, 30) ~ (4, 41) => 0.0108536 (2, 31) ~ (4, 22) => 0.028064 (2, 31) ~ (4, 24) => 0.0264322 (2, 31) ~ (4, 27) => 0.0269888 (2, 31) ~ (4, 28) => 0.0158611 (2, 31) ~ (4, 30) => 0.0415634 (2, 31) ~ (4, 31) => 0.069801 (2, 31) ~ (4, 32) => 0.0137445 (2, 31) ~ (4, 33) => 0.200735 (2, 31) ~ (4, 34) => 0.0193556 (2, 31) ~ (4, 39) => 0.0241224 (2, 31) ~ (4, 40) => 0.0699924 (2, 31) ~ (4, 41) => 0.0249167 (2, 31) ~ (4, 42) => 0.0105018 (2, 32) ~ (4, 23) => 0.0136887 (2, 32) ~ (4, 25) => 0.0282818 (2, 32) ~ (4, 29) => 0.0114172 (2, 32) ~ (4, 31) => 0.0589819 (2, 32) ~ (4, 32) => 0.258287 (2, 32) ~ (4, 33) => 0.0422695 (2, 32) ~ (4, 34) => 0.0996642 (2, 32) ~ (4, 40) => 0.0349906 (2, 32) ~ (4, 41) => 0.0800872 (2, 32) ~ (4, 42) => 0.0236234 (2, 32) ~ (4, 43) => 0.0105396 (2, 33) ~ (4, 26) => 0.0272326 (2, 33) ~ (4, 32) => 0.0678857 (2, 33) ~ (4, 33) => 0.419549 (2, 33) ~ (4, 34) => 0.0618204 (2, 33) ~ (4, 35) => 0.0860165 (2, 33) ~ (4, 41) => 0.0373187 (2, 33) ~ (4, 42) => 0.0834393 (2, 33) ~ (4, 43) => 0.0225148 (2, 33) ~ (4, 44) => 0.0104026 (2, 34) ~ (4, 27) => 0.0278057 (2, 34) ~ (4, 33) => 0.088788 (2, 34) ~ (4, 34) => 0.477058 (2, 34) ~ (4, 35) => 0.0675444 (2, 34) ~ (4, 36) => 0.0774371 (2, 34) ~ (4, 42) => 0.0371009 (2, 34) ~ (4, 43) => 0.0842122 (2, 34) ~ (4, 44) => 0.0201752 (2, 35) ~ (4, 28) => 0.0286754 (2, 35) ~ (4, 34) => 0.0837725 (2, 35) ~ (4, 35) => 0.506085 (2, 35) ~ (4, 36) => 0.0747323 (2, 35) ~ (4, 37) => 0.0764505 (2, 35) ~ (4, 43) => 0.0355005 (2, 35) ~ (4, 44) => 0.0828104 (2, 35) ~ (4, 45) => 0.0136008 (2, 36) ~ (4, 29) => 0.027168 (2, 36) ~ (4, 35) => 0.0643335 (2, 36) ~ (4, 36) => 0.510644 (2, 36) ~ (4, 37) => 0.0893118 (2, 36) ~ (4, 38) => 0.0813454 (2, 36) ~ (4, 44) => 0.0324763 (2, 36) ~ (4, 45) => 0.0769031 (2, 36) ~ (4, 46) => 0.0122441 (2, 36) ~ (4, 47) => 0.0117149 (2, 36) ~ (4, 48) => 0.017039 (2, 37) ~ (4, 30) => 0.0229957 (2, 37) ~ (4, 36) => 0.0706496 (2, 37) ~ (4, 37) => 0.510045 (2, 37) ~ (4, 38) => 0.100204 (2, 37) ~ (4, 39) => 0.0855251 (2, 37) ~ (4, 45) => 0.029787 (2, 37) ~ (4, 46) => 0.0661604 (2, 37) ~ (4, 48) => 0.0135499 (2, 37) ~ (4, 49) => 0.0269367 (2, 38) ~ (4, 31) => 0.0175032 (2, 38) ~ (4, 37) => 0.0700266 (2, 38) ~ (4, 38) => 0.500383 (2, 38) ~ (4, 39) => 0.105014 (2, 38) ~ (4, 40) => 0.0818513 (2, 38) ~ (4, 46) => 0.0234666 (2, 38) ~ (4, 47) => 0.045906 (2, 38) ~ (4, 49) => 0.0131891 (2, 38) ~ (4, 50) => 0.0505568 (2, 39) ~ (4, 32) => 0.0174012 (2, 39) ~ (4, 38) => 0.0729988 (2, 39) ~ (4, 39) => 0.495093 (2, 39) ~ (4, 40) => 0.111376 (2, 39) ~ (4, 41) => 0.0786771 (2, 39) ~ (4, 47) => 0.0283747 (2, 39) ~ (4, 48) => 0.0460581 (2, 39) ~ (4, 51) => 0.0545152 (2, 40) ~ (4, 33) => 0.0162995 (2, 40) ~ (4, 39) => 0.076679 (2, 40) ~ (4, 40) => 0.493329 (2, 40) ~ (4, 41) => 0.114089 (2, 40) ~ (4, 42) => 0.0766321 (2, 40) ~ (4, 48) => 0.0278742 (2, 40) ~ (4, 49) => 0.0420016 (2, 40) ~ (4, 51) => 0.0110042 (2, 40) ~ (4, 52) => 0.0547848 (2, 41) ~ (4, 34) => 0.0116131 (2, 41) ~ (4, 40) => 0.0914023 (2, 41) ~ (4, 41) => 0.473634 (2, 41) ~ (4, 42) => 0.111796 (2, 41) ~ (4, 43) => 0.0713917 (2, 41) ~ (4, 49) => 0.0269032 (2, 41) ~ (4, 50) => 0.0395052 (2, 41) ~ (4, 52) => 0.0132486 (2, 41) ~ (4, 53) => 0.0566103 (2, 42) ~ (4, 40) => 0.010478 (2, 42) ~ (4, 41) => 0.119968 (2, 42) ~ (4, 42) => 0.468146 (2, 42) ~ (4, 43) => 0.114051 (2, 42) ~ (4, 44) => 0.0674412 (2, 42) ~ (4, 49) => 0.0116669 (2, 42) ~ (4, 50) => 0.0207721 (2, 42) ~ (4, 51) => 0.0295392 (2, 42) ~ (4, 53) => 0.012907 (2, 42) ~ (4, 54) => 0.0614878 (2, 43) ~ (4, 41) => 0.0117239 (2, 43) ~ (4, 42) => 0.131597 (2, 43) ~ (4, 43) => 0.455075 (2, 43) ~ (4, 44) => 0.110172 (2, 43) ~ (4, 45) => 0.0534491 (2, 43) ~ (4, 50) => 0.0282732 (2, 43) ~ (4, 51) => 0.0164233 (2, 43) ~ (4, 52) => 0.0210911 (2, 43) ~ (4, 53) => 0.0203271 (2, 43) ~ (4, 54) => 0.0161768 (2, 43) ~ (4, 55) => 0.0610701 (2, 44) ~ (4, 42) => 0.0112944 (2, 44) ~ (4, 43) => 0.139226 (2, 44) ~ (4, 44) => 0.421492 (2, 44) ~ (4, 45) => 0.0887165 (2, 44) ~ (4, 46) => 0.040336 (2, 44) ~ (4, 51) => 0.0649874 (2, 44) ~ (4, 52) => 0.0112763 (2, 44) ~ (4, 53) => 0.0119737 (2, 44) ~ (4, 54) => 0.053519 (2, 44) ~ (4, 55) => 0.0155204 (2, 44) ~ (4, 56) => 0.0574473 (2, 45) ~ (4, 44) => 0.142093 (2, 45) ~ (4, 45) => 0.338973 (2, 45) ~ (4, 46) => 0.077569 (2, 45) ~ (4, 47) => 0.0328013 (2, 45) ~ (4, 49) => 0.0101379 (2, 45) ~ (4, 51) => 0.0124482 (2, 45) ~ (4, 52) => 0.136998 (2, 45) ~ (4, 54) => 0.0126651 (2, 45) ~ (4, 55) => 0.0692334 (2, 45) ~ (4, 56) => 0.0110808 (2, 45) ~ (4, 57) => 0.0585642 (2, 46) ~ (4, 45) => 0.128081 (2, 46) ~ (4, 46) => 0.266793 (2, 46) ~ (4, 47) => 0.066356 (2, 46) ~ (4, 48) => 0.0234567 (2, 46) ~ (4, 50) => 0.012666 (2, 46) ~ (4, 52) => 0.0160433 (2, 46) ~ (4, 53) => 0.241252 (2, 46) ~ (4, 54) => 0.0103079 (2, 46) ~ (4, 56) => 0.0726072 (2, 46) ~ (4, 58) => 0.0620953 (2, 47) ~ (4, 46) => 0.11423 (2, 47) ~ (4, 47) => 0.204916 (2, 47) ~ (4, 48) => 0.054265 (2, 47) ~ (4, 49) => 0.0122485 (2, 47) ~ (4, 51) => 0.0217386 (2, 47) ~ (4, 53) => 0.0281462 (2, 47) ~ (4, 54) => 0.278594 (2, 47) ~ (4, 55) => 0.0621101 (2, 47) ~ (4, 57) => 0.0578478 (2, 47) ~ (4, 59) => 0.0566805 (2, 48) ~ (4, 47) => 0.0887885 (2, 48) ~ (4, 48) => 0.113481 (2, 48) ~ (4, 49) => 0.0294213 (2, 48) ~ (4, 50) => 0.0277509 (2, 48) ~ (4, 52) => 0.0240366 (2, 48) ~ (4, 53) => 0.0183568 (2, 48) ~ (4, 54) => 0.0513192 (2, 48) ~ (4, 55) => 0.316657 (2, 48) ~ (4, 56) => 0.113577 (2, 48) ~ (4, 58) => 0.039584 (2, 48) ~ (4, 60) => 0.0580738 (2, 49) ~ (4, 47) => 0.010221 (2, 49) ~ (4, 48) => 0.0671802 (2, 49) ~ (4, 49) => 0.031381 (2, 49) ~ (4, 51) => 0.0425332 (2, 49) ~ (4, 53) => 0.0248722 (2, 49) ~ (4, 54) => 0.0435647 (2, 49) ~ (4, 55) => 0.0433843 (2, 49) ~ (4, 56) => 0.288596 (2, 49) ~ (4, 57) => 0.256565 (2, 49) ~ (4, 59) => 0.0262983 (2, 49) ~ (4, 61) => 0.050732 (2, 50) ~ (4, 49) => 0.0370334 (2, 50) ~ (4, 50) => 0.0265945 (2, 50) ~ (4, 52) => 0.0411731 (2, 50) ~ (4, 54) => 0.0251351 (2, 50) ~ (4, 55) => 0.0520817 (2, 50) ~ (4, 56) => 0.0309156 (2, 50) ~ (4, 57) => 0.281636 (2, 50) ~ (4, 58) => 0.329423 (2, 50) ~ (4, 60) => 0.0218362 (2, 50) ~ (4, 62) => 0.0427575 (2, 51) ~ (4, 51) => 0.0206836 (2, 51) ~ (4, 53) => 0.0389724 (2, 51) ~ (4, 56) => 0.0332808 (2, 51) ~ (4, 57) => 0.0210553 (2, 51) ~ (4, 58) => 0.261659 (2, 51) ~ (4, 59) => 0.481388 (2, 51) ~ (4, 63) => 0.0250212 (2, 52) ~ (4, 52) => 0.017403 (2, 52) ~ (4, 54) => 0.0313144 (2, 52) ~ (4, 58) => 0.0163025 (2, 52) ~ (4, 59) => 0.226902 (2, 52) ~ (4, 60) => 0.569504 (2, 52) ~ (4, 64) => 0.0147197 (2, 53) ~ (4, 53) => 0.0109879 (2, 53) ~ (4, 55) => 0.0228179 (2, 53) ~ (4, 59) => 0.0133433 (2, 53) ~ (4, 60) => 0.208012 (2, 53) ~ (4, 61) => 0.63705 (2, 54) ~ (4, 56) => 0.0137268 (2, 54) ~ (4, 60) => 0.0124162 (2, 54) ~ (4, 61) => 0.188405 (2, 54) ~ (4, 62) => 0.690922 (2, 55) ~ (4, 61) => 0.010233 (2, 55) ~ (4, 62) => 0.16719 (2, 55) ~ (4, 63) => 0.746819 (2, 56) ~ (4, 63) => 0.148808 (2, 56) ~ (4, 64) => 0.792702 (2, 57) ~ (4, 64) => 0.126001 (2, 57) ~ (4, 65) => 0.839467 (2, 58) ~ (4, 65) => 0.101762 (2, 58) ~ (4, 66) => 0.875193 (2, 59) ~ (4, 66) => 0.0770482 (2, 59) ~ (4, 67) => 0.907624 (2, 60) ~ (4, 67) => 0.0518415 (2, 60) ~ (4, 68) => 0.938915 (2, 61) ~ (4, 68) => 0.0344177 (2, 61) ~ (4, 69) => 0.959284 (2, 62) ~ (4, 69) => 0.0276166 (2, 62) ~ (4, 70) => 0.96798 ; gap posteriors (2, 0) ~ (4, -1) => 0.00145835 (2, 1) ~ (4, -1) => 0.00457394 (2, 2) ~ (4, -1) => 0.0113339 (2, 3) ~ (4, -1) => 0.0178 (2, 4) ~ (4, -1) => 0.0120469 (2, 5) ~ (4, -1) => 0.0163938 (2, 6) ~ (4, -1) => 0.0181152 (2, 7) ~ (4, -1) => 0.0212082 (2, 8) ~ (4, -1) => 0.0271727 (2, 9) ~ (4, -1) => 0.034118 (2, 10) ~ (4, -1) => 0.0499147 (2, 11) ~ (4, -1) => 0.0656988 (2, 12) ~ (4, -1) => 0.0855329 (2, 13) ~ (4, -1) => 0.105528 (2, 14) ~ (4, -1) => 0.138896 (2, 15) ~ (4, -1) => 0.166902 (2, 16) ~ (4, -1) => 0.200979 (2, 17) ~ (4, -1) => 0.22567 (2, 18) ~ (4, -1) => 0.245282 (2, 19) ~ (4, -1) => 0.209971 (2, 20) ~ (4, -1) => 0.163088 (2, 21) ~ (4, -1) => 0.114996 (2, 22) ~ (4, -1) => 0.106411 (2, 23) ~ (4, -1) => 0.0927752 (2, 24) ~ (4, -1) => 0.0908801 (2, 25) ~ (4, -1) => 0.08764 (2, 26) ~ (4, -1) => 0.090675 (2, 27) ~ (4, -1) => 0.101518 (2, 28) ~ (4, -1) => 0.0885668 (2, 29) ~ (4, -1) => 0.122055 (2, 30) ~ (4, -1) => 0.243746 (2, 31) ~ (4, -1) => 0.427921 (2, 32) ~ (4, -1) => 0.338169 (2, 33) ~ (4, -1) => 0.183821 (2, 34) ~ (4, -1) => 0.119878 (2, 35) ~ (4, -1) => 0.0983728 (2, 36) ~ (4, -1) => 0.0768198 (2, 37) ~ (4, -1) => 0.0741467 (2, 38) ~ (4, -1) => 0.0921037 (2, 39) ~ (4, -1) => 0.0955057 (2, 40) ~ (4, -1) => 0.0873058 (2, 41) ~ (4, -1) => 0.103895 (2, 42) ~ (4, -1) => 0.0835427 (2, 43) ~ (4, -1) => 0.0746221 (2, 44) ~ (4, -1) => 0.0842112 (2, 45) ~ (4, -1) => 0.0974357 (2, 46) ~ (4, -1) => 0.100342 (2, 47) ~ (4, -1) => 0.109223 (2, 48) ~ (4, -1) => 0.118954 (2, 49) ~ (4, -1) => 0.114672 (2, 50) ~ (4, -1) => 0.111414 (2, 51) ~ (4, -1) => 0.117939 (2, 52) ~ (4, -1) => 0.123854 (2, 53) ~ (4, -1) => 0.10779 (2, 54) ~ (4, -1) => 0.0945296 (2, 55) ~ (4, -1) => 0.0757575 (2, 56) ~ (4, -1) => 0.0584903 (2, 57) ~ (4, -1) => 0.0345322 (2, 58) ~ (4, -1) => 0.0230455 (2, 59) ~ (4, -1) => 0.0153277 (2, 60) ~ (4, -1) => 0.00924337 (2, 61) ~ (4, -1) => 0.00629866 (2, 62) ~ (4, -1) => 0.00440294 (2, -1) ~ (4, 0) => 0.00145835 (2, -1) ~ (4, 1) => 0.00457394 (2, -1) ~ (4, 2) => 0.0113339 (2, -1) ~ (4, 3) => 0.0178 (2, -1) ~ (4, 4) => 0.0237629 (2, -1) ~ (4, 5) => 0.0182473 (2, -1) ~ (4, 6) => 0.0173745 (2, -1) ~ (4, 7) => 0.0201079 (2, -1) ~ (4, 8) => 0.02679 (2, -1) ~ (4, 9) => 0.054195 (2, -1) ~ (4, 10) => 0.0574693 (2, -1) ~ (4, 11) => 0.0622358 (2, -1) ~ (4, 12) => 0.0643405 (2, -1) ~ (4, 13) => 0.0569663 (2, -1) ~ (4, 14) => 0.0666182 (2, -1) ~ (4, 15) => 0.0777789 (2, -1) ~ (4, 16) => 0.111015 (2, -1) ~ (4, 17) => 0.204611 (2, -1) ~ (4, 18) => 0.399836 (2, -1) ~ (4, 19) => 0.363226 (2, -1) ~ (4, 20) => 0.153688 (2, -1) ~ (4, 21) => 0.207969 (2, -1) ~ (4, 22) => 0.257586 (2, -1) ~ (4, 23) => 0.267052 (2, -1) ~ (4, 24) => 0.29294 (2, -1) ~ (4, 25) => 0.293276 (2, -1) ~ (4, 26) => 0.284351 (2, -1) ~ (4, 27) => 0.295261 (2, -1) ~ (4, 28) => 0.280734 (2, -1) ~ (4, 29) => 0.238287 (2, -1) ~ (4, 30) => 0.216545 (2, -1) ~ (4, 31) => 0.198974 (2, -1) ~ (4, 32) => 0.166097 (2, -1) ~ (4, 33) => 0.164116 (2, -1) ~ (4, 34) => 0.173205 (2, -1) ~ (4, 35) => 0.190488 (2, -1) ~ (4, 36) => 0.170258 (2, -1) ~ (4, 37) => 0.151924 (2, -1) ~ (4, 38) => 0.139023 (2, -1) ~ (4, 39) => 0.113196 (2, -1) ~ (4, 40) => 0.0683219 (2, -1) ~ (4, 41) => 0.0487309 (2, -1) ~ (4, 42) => 0.0458689 (2, -1) ~ (4, 43) => 0.0674903 (2, -1) ~ (4, 44) => 0.112937 (2, -1) ~ (4, 45) => 0.27049 (2, -1) ~ (4, 46) => 0.399201 (2, -1) ~ (4, 47) => 0.510922 (2, -1) ~ (4, 48) => 0.637096 (2, -1) ~ (4, 49) => 0.75908 (2, -1) ~ (4, 50) => 0.793881 (2, -1) ~ (4, 51) => 0.726127 (2, -1) ~ (4, 52) => 0.663945 (2, -1) ~ (4, 53) => 0.535594 (2, -1) ~ (4, 54) => 0.415915 (2, -1) ~ (4, 55) => 0.357125 (2, -1) ~ (4, 56) => 0.378768 (2, -1) ~ (4, 57) => 0.324332 (2, -1) ~ (4, 58) => 0.290936 (2, -1) ~ (4, 59) => 0.195387 (2, -1) ~ (4, 60) => 0.130158 (2, -1) ~ (4, 61) => 0.11358 (2, -1) ~ (4, 62) => 0.0991303 (2, -1) ~ (4, 63) => 0.0793515 (2, -1) ~ (4, 64) => 0.0665778 (2, -1) ~ (4, 65) => 0.0587713 (2, -1) ~ (4, 66) => 0.0477591 (2, -1) ~ (4, 67) => 0.0405344 (2, -1) ~ (4, 68) => 0.0266672 (2, -1) ~ (4, 69) => 0.0130997 (2, -1) ~ (4, 70) => 0.0320196 ; Sparse posterior probability matrix for sequences 3 and 4 ; Format is: ; (3, position_1) ~ (4, position_2) => prob ; which means that (3, position_1) is aligned to (4, position_2) with probability prob. ; (3, position_1) ~ (4, -1) => prob ; means that (3, position_1) is aligned to a gap in 4 with probability prob. ; sequence is 0-based and position is 0-based ; match posteriors (3, 0) ~ (4, 0) => 0.997285 (3, 1) ~ (4, 1) => 0.992992 (3, 2) ~ (4, 2) => 0.988812 (3, 3) ~ (4, 3) => 0.983294 (3, 4) ~ (4, 4) => 0.971159 (3, 5) ~ (4, 5) => 0.964403 (3, 6) ~ (4, 6) => 0.932676 (3, 7) ~ (4, 4) => 0.0138149 (3, 7) ~ (4, 7) => 0.901384 (3, 8) ~ (4, 5) => 0.0165789 (3, 8) ~ (4, 8) => 0.871325 (3, 9) ~ (4, 6) => 0.0441118 (3, 9) ~ (4, 9) => 0.80773 (3, 10) ~ (4, 7) => 0.0721722 (3, 10) ~ (4, 10) => 0.742859 (3, 10) ~ (4, 11) => 0.0103132 (3, 11) ~ (4, 8) => 0.101789 (3, 11) ~ (4, 11) => 0.722337 (3, 11) ~ (4, 12) => 0.0104381 (3, 12) ~ (4, 9) => 0.164341 (3, 12) ~ (4, 12) => 0.712839 (3, 13) ~ (4, 10) => 0.225053 (3, 13) ~ (4, 13) => 0.709947 (3, 14) ~ (4, 11) => 0.245643 (3, 14) ~ (4, 14) => 0.703531 (3, 15) ~ (4, 12) => 0.25589 (3, 15) ~ (4, 15) => 0.695015 (3, 16) ~ (4, 13) => 0.258876 (3, 16) ~ (4, 16) => 0.685029 (3, 17) ~ (4, 14) => 0.265331 (3, 17) ~ (4, 17) => 0.676414 (3, 17) ~ (4, 18) => 0.0128501 (3, 18) ~ (4, 12) => 0.0104514 (3, 18) ~ (4, 15) => 0.271436 (3, 18) ~ (4, 18) => 0.655436 (3, 18) ~ (4, 19) => 0.0279704 (3, 19) ~ (4, 13) => 0.0112605 (3, 19) ~ (4, 16) => 0.277563 (3, 19) ~ (4, 19) => 0.620308 (3, 19) ~ (4, 20) => 0.0424477 (3, 19) ~ (4, 21) => 0.0149749 (3, 20) ~ (4, 14) => 0.0118974 (3, 20) ~ (4, 17) => 0.277555 (3, 20) ~ (4, 20) => 0.596722 (3, 20) ~ (4, 21) => 0.0403282 (3, 20) ~ (4, 22) => 0.0436599 (3, 21) ~ (4, 15) => 0.0122614 (3, 21) ~ (4, 18) => 0.268807 (3, 21) ~ (4, 21) => 0.373359 (3, 21) ~ (4, 22) => 0.0585173 (3, 21) ~ (4, 23) => 0.259138 (3, 22) ~ (4, 16) => 0.0126356 (3, 22) ~ (4, 19) => 0.259571 (3, 22) ~ (4, 22) => 0.233008 (3, 22) ~ (4, 23) => 0.066998 (3, 22) ~ (4, 24) => 0.397471 (3, 23) ~ (4, 17) => 0.0128529 (3, 23) ~ (4, 20) => 0.25384 (3, 23) ~ (4, 23) => 0.149743 (3, 23) ~ (4, 24) => 0.0764351 (3, 23) ~ (4, 25) => 0.476947 (3, 24) ~ (4, 18) => 0.0117948 (3, 24) ~ (4, 21) => 0.164833 (3, 24) ~ (4, 24) => 0.0405693 (3, 24) ~ (4, 25) => 0.0595401 (3, 24) ~ (4, 26) => 0.697766 (3, 25) ~ (4, 19) => 0.0109566 (3, 25) ~ (4, 22) => 0.0747387 (3, 25) ~ (4, 25) => 0.0173782 (3, 25) ~ (4, 26) => 0.0392685 (3, 25) ~ (4, 27) => 0.834523 (3, 26) ~ (4, 20) => 0.010506 (3, 26) ~ (4, 23) => 0.0238937 (3, 26) ~ (4, 27) => 0.029038 (3, 26) ~ (4, 28) => 0.913101 (3, 27) ~ (4, 24) => 0.0125322 (3, 27) ~ (4, 28) => 0.0173845 (3, 27) ~ (4, 29) => 0.942428 (3, 28) ~ (4, 25) => 0.0100139 (3, 28) ~ (4, 29) => 0.0150017 (3, 28) ~ (4, 30) => 0.952637 (3, 29) ~ (4, 30) => 0.011663 (3, 29) ~ (4, 31) => 0.963971 (3, 30) ~ (4, 32) => 0.971813 (3, 31) ~ (4, 33) => 0.975934 (3, 32) ~ (4, 34) => 0.981038 (3, 33) ~ (4, 35) => 0.985724 (3, 34) ~ (4, 36) => 0.989666 (3, 35) ~ (4, 37) => 0.991388 (3, 36) ~ (4, 38) => 0.99414 (3, 37) ~ (4, 39) => 0.996371 (3, 38) ~ (4, 40) => 0.998076 (3, 39) ~ (4, 41) => 0.998239 (3, 40) ~ (4, 42) => 0.998395 (3, 41) ~ (4, 43) => 0.998593 (3, 42) ~ (4, 44) => 0.998744 (3, 43) ~ (4, 45) => 0.998774 (3, 44) ~ (4, 46) => 0.998657 (3, 45) ~ (4, 47) => 0.99856 (3, 46) ~ (4, 48) => 0.998716 (3, 47) ~ (4, 49) => 0.998885 (3, 48) ~ (4, 50) => 0.998833 (3, 49) ~ (4, 51) => 0.998673 (3, 50) ~ (4, 52) => 0.998235 (3, 51) ~ (4, 53) => 0.998379 (3, 52) ~ (4, 54) => 0.998923 (3, 53) ~ (4, 55) => 0.999092 (3, 54) ~ (4, 56) => 0.999044 (3, 55) ~ (4, 57) => 0.998946 (3, 56) ~ (4, 58) => 0.999078 (3, 57) ~ (4, 59) => 0.999169 (3, 58) ~ (4, 60) => 0.999287 (3, 59) ~ (4, 61) => 0.999352 (3, 60) ~ (4, 62) => 0.999499 (3, 61) ~ (4, 63) => 0.999638 (3, 62) ~ (4, 64) => 0.999671 (3, 63) ~ (4, 65) => 0.999653 (3, 64) ~ (4, 66) => 0.999679 (3, 65) ~ (4, 67) => 0.999716 (3, 66) ~ (4, 68) => 0.999772 (3, 67) ~ (4, 69) => 0.999893 (3, 68) ~ (4, 70) => 0.999934 ; gap posteriors (3, 0) ~ (4, -1) => 0.00271541 (3, 1) ~ (4, -1) => 0.00700843 (3, 2) ~ (4, -1) => 0.0111883 (3, 3) ~ (4, -1) => 0.0167065 (3, 4) ~ (4, -1) => 0.0288411 (3, 5) ~ (4, -1) => 0.0355971 (3, 6) ~ (4, -1) => 0.0673243 (3, 7) ~ (4, -1) => 0.084801 (3, 8) ~ (4, -1) => 0.112096 (3, 9) ~ (4, -1) => 0.148158 (3, 10) ~ (4, -1) => 0.174656 (3, 11) ~ (4, -1) => 0.165435 (3, 12) ~ (4, -1) => 0.12282 (3, 13) ~ (4, -1) => 0.0650001 (3, 14) ~ (4, -1) => 0.0508256 (3, 15) ~ (4, -1) => 0.0490953 (3, 16) ~ (4, -1) => 0.0560949 (3, 17) ~ (4, -1) => 0.0454046 (3, 18) ~ (4, -1) => 0.034706 (3, 19) ~ (4, -1) => 0.0334462 (3, 20) ~ (4, -1) => 0.0298373 (3, 21) ~ (4, -1) => 0.0279173 (3, 22) ~ (4, -1) => 0.0303174 (3, 23) ~ (4, -1) => 0.0301821 (3, 24) ~ (4, -1) => 0.0254968 (3, 25) ~ (4, -1) => 0.0231351 (3, 26) ~ (4, -1) => 0.0234612 (3, 27) ~ (4, -1) => 0.0276558 (3, 28) ~ (4, -1) => 0.0223477 (3, 29) ~ (4, -1) => 0.0243657 (3, 30) ~ (4, -1) => 0.0281865 (3, 31) ~ (4, -1) => 0.0240664 (3, 32) ~ (4, -1) => 0.0189616 (3, 33) ~ (4, -1) => 0.0142764 (3, 34) ~ (4, -1) => 0.0103343 (3, 35) ~ (4, -1) => 0.0086115 (3, 36) ~ (4, -1) => 0.00586039 (3, 37) ~ (4, -1) => 0.00362867 (3, 38) ~ (4, -1) => 0.00192404 (3, 39) ~ (4, -1) => 0.00176054 (3, 40) ~ (4, -1) => 0.0016048 (3, 41) ~ (4, -1) => 0.00140727 (3, 42) ~ (4, -1) => 0.00125629 (3, 43) ~ (4, -1) => 0.00122613 (3, 44) ~ (4, -1) => 0.00134307 (3, 45) ~ (4, -1) => 0.00144017 (3, 46) ~ (4, -1) => 0.0012843 (3, 47) ~ (4, -1) => 0.0011152 (3, 48) ~ (4, -1) => 0.00116652 (3, 49) ~ (4, -1) => 0.00132734 (3, 50) ~ (4, -1) => 0.0017646 (3, 51) ~ (4, -1) => 0.00162137 (3, 52) ~ (4, -1) => 0.00107741 (3, 53) ~ (4, -1) => 0.000908136 (3, 54) ~ (4, -1) => 0.000956237 (3, 55) ~ (4, -1) => 0.00105375 (3, 56) ~ (4, -1) => 0.000921726 (3, 57) ~ (4, -1) => 0.00083077 (3, 58) ~ (4, -1) => 0.000712752 (3, 59) ~ (4, -1) => 0.000647902 (3, 60) ~ (4, -1) => 0.000500739 (3, 61) ~ (4, -1) => 0.000361562 (3, 62) ~ (4, -1) => 0.000329196 (3, 63) ~ (4, -1) => 0.000346661 (3, 64) ~ (4, -1) => 0.000320613 (3, 65) ~ (4, -1) => 0.000283718 (3, 66) ~ (4, -1) => 0.000228167 (3, 67) ~ (4, -1) => 0.000107467 (3, 68) ~ (4, -1) => 0.0001 (3, -1) ~ (4, 0) => 0.00271541 (3, -1) ~ (4, 1) => 0.00700843 (3, -1) ~ (4, 2) => 0.0111883 (3, -1) ~ (4, 3) => 0.0167065 (3, -1) ~ (4, 4) => 0.0150261 (3, -1) ~ (4, 5) => 0.0190183 (3, -1) ~ (4, 6) => 0.0232125 (3, -1) ~ (4, 7) => 0.0264437 (3, -1) ~ (4, 8) => 0.0268854 (3, -1) ~ (4, 9) => 0.0279289 (3, -1) ~ (4, 10) => 0.032088 (3, -1) ~ (4, 11) => 0.0217061 (3, -1) ~ (4, 12) => 0.010382 (3, -1) ~ (4, 13) => 0.0199166 (3, -1) ~ (4, 14) => 0.0192406 (3, -1) ~ (4, 15) => 0.0212876 (3, -1) ~ (4, 16) => 0.0247724 (3, -1) ~ (4, 17) => 0.0331775 (3, -1) ~ (4, 18) => 0.0511122 (3, -1) ~ (4, 19) => 0.0811947 (3, -1) ~ (4, 20) => 0.096484 (3, -1) ~ (4, 21) => 0.406505 (3, -1) ~ (4, 22) => 0.590076 (3, -1) ~ (4, 23) => 0.500228 (3, -1) ~ (4, 24) => 0.472993 (3, -1) ~ (4, 25) => 0.436121 (3, -1) ~ (4, 26) => 0.262965 (3, -1) ~ (4, 27) => 0.136439 (3, -1) ~ (4, 28) => 0.0695145 (3, -1) ~ (4, 29) => 0.0425707 (3, -1) ~ (4, 30) => 0.0357003 (3, -1) ~ (4, 31) => 0.0360287 (3, -1) ~ (4, 32) => 0.0281865 (3, -1) ~ (4, 33) => 0.0240664 (3, -1) ~ (4, 34) => 0.0189616 (3, -1) ~ (4, 35) => 0.0142764 (3, -1) ~ (4, 36) => 0.0103343 (3, -1) ~ (4, 37) => 0.0086115 (3, -1) ~ (4, 38) => 0.00586039 (3, -1) ~ (4, 39) => 0.00362867 (3, -1) ~ (4, 40) => 0.00192404 (3, -1) ~ (4, 41) => 0.00176054 (3, -1) ~ (4, 42) => 0.0016048 (3, -1) ~ (4, 43) => 0.00140727 (3, -1) ~ (4, 44) => 0.00125629 (3, -1) ~ (4, 45) => 0.00122613 (3, -1) ~ (4, 46) => 0.00134307 (3, -1) ~ (4, 47) => 0.00144017 (3, -1) ~ (4, 48) => 0.0012843 (3, -1) ~ (4, 49) => 0.0011152 (3, -1) ~ (4, 50) => 0.00116652 (3, -1) ~ (4, 51) => 0.00132734 (3, -1) ~ (4, 52) => 0.0017646 (3, -1) ~ (4, 53) => 0.00162137 (3, -1) ~ (4, 54) => 0.00107741 (3, -1) ~ (4, 55) => 0.000908136 (3, -1) ~ (4, 56) => 0.000956237 (3, -1) ~ (4, 57) => 0.00105375 (3, -1) ~ (4, 58) => 0.000921726 (3, -1) ~ (4, 59) => 0.00083077 (3, -1) ~ (4, 60) => 0.000712752 (3, -1) ~ (4, 61) => 0.000647902 (3, -1) ~ (4, 62) => 0.000500739 (3, -1) ~ (4, 63) => 0.000361562 (3, -1) ~ (4, 64) => 0.000329196 (3, -1) ~ (4, 65) => 0.000346661 (3, -1) ~ (4, 66) => 0.000320613 (3, -1) ~ (4, 67) => 0.000283718 (3, -1) ~ (4, 68) => 0.000228167 (3, -1) ~ (4, 69) => 0.000107467 (3, -1) ~ (4, 70) => 0.0001